ABIDIFF(1) Libabigail ABIDIFF(1)
NAME
abidiff - compare ABIs of ELF files
abidiff compares the Application Binary Interfaces (ABI) of two shared libraries in ELF
format. It emits a meaningful report describing the differences between the two ABIs.
This tool can also compare the textual representations of the ABI of two ELF binaries (as
emitted by abidw) or an ELF binary against a textual representation of another ELF binary.
For a comprehensive ABI change report that includes changes about function and variable
sub-types, the two input shared libraries must be accompanied with their debug information
in DWARF format. Otherwise, only ELF symbols that were added or removed are reported.
INVOCATION
abidiff [options] <first-shared-library> <second-shared-library>
ENVIRONMENT
abidiff loads two default suppression specifications files, merges their content and use
it to filter out ABI change reports that might be considered as false positives to users.
· Default system-wide suppression specification file
It’s located by the optional environment variable LIBABIGAIL_DEFAULT_SYSTEM_SUPPRES‐
SION_FILE. If that environment variable is not set, then abidiff tries to load the sup‐
pression file $libdir/libabigail/libabigail-default.abignore. If that file is not
present, then no default system-wide suppression specification file is loaded.
· Default user suppression specification file.
It’s located by the optional environment LIBABIGAIL_DEFAULT_USER_SUPPRESSION_FILE. If
that environment variable is not set, then abidiff tries to load the suppression file
$HOME/.abignore. If that file is not present, then no default user suppression specifi‐
cation is loaded.
OPTIONS
· --help | -h
Display a short help about the command and exit.
· --version | -v
Display the version of the program and exit.
· --debug-info-dir1 | --d1 <di-path1>
For cases where the debug information for first-shared-library is split out into a
separate file, tells abidiff where to find that separate debug information file.
Note that di-path must point to the root directory under which the debug information
is arranged in a tree-like manner. Under Red Hat based systems, that directory is
usually <root>/usr/lib/debug.
Note also that this option is not mandatory for split debug information installed by
your system’s package manager because then abidiff knows where to find it.
· --debug-info-dir2 | --d2 <di-path2>
Like --debug-info-dir1, this options tells abidiff where to find the split debug
information for the second-shared-library file.
· --headers-dir1 | --hd1 <headers-directory-path-1>
Specifies where to find the public headers of the first shared library that the tool
has to consider. The tool will thus filter out ABI changes on types that are not
defined in public headers.
· --headers-dir2 | --hd2 <headers-directory-path-1>
Specifies where to find the public headers of the second shared library that the tool
has to consider. The tool will thus filter out ABI changes on types that are not
defined in public headers.
· --no-linux-kernel-mode
Without this option, if abidiff detects that the binaries it is looking at are Linux
Kernel binaries (either vmlinux or modules) then it only considers functions and
variables which ELF symbols are listed in the __ksymtab and __ksymtab_gpl sections.
With this option, abidiff considers the binary as a non-special ELF binary. It thus
considers functions and variables which are defined and exported in the ELF sense.
· --kmi-whitelist | -kaw <path-to-whitelist>
When analyzing a Linux kernel binary, this option points to the white list of names
of ELF symbols of functions and variables which ABI must be considered. That white
list is called a “Kernel Module Interface white list”. This is because for the Ker‐
nel, we don’t talk about ABI; we rather talk about the interface between the Kernel
and its module. Hence the term KMI rather than ABI.
Any other function or variable which ELF symbol are not present in that white list
will not be considered by this tool.
If this option is not provided – thus if no white list is provided – then the entire
KMI, that is, the set of all publicly defined and exported functions and global vari‐
ables by the Linux Kernel binaries, is considered.
· --drop-private-types
This option is to be used with the --headers-dir1 and --headers-dir2 options. With
this option, types that are NOT defined in the headers are entirely dropped from the
internal representation build by Libabigail to represent the ABI. They thus don’t
have to be filtered out from the final ABI change report because they are not even
present in Libabigail’s representation.
Without this option however, those private types are kept in the internal representa‐
tion and later filtered out from the report.
This options thus potentially makes Libabigail consume less memory. It’s meant to be
mainly used to optimize the memory consumption of the tool on binaries with a lot of
publicly defined and exported types.
· --stat
Rather than displaying the detailed ABI differences between first-shared-library and
second-shared-library, just display some summary statistics about these differences.
· --symtabs
Only display the symbol tables of the first-shared-library and second-shared-library.
· --deleted-fns
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the globally defined functions that got deleted from
first-shared-library.
· --changed-fns
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the changes in sub-types of the global functions
defined in first-shared-library.
· --added-fns
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the globally defined functions that were added to
second-shared-library.
· --deleted-vars
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the globally defined variables that were deleted
from first-shared-library.
· --changed-vars
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the changes in the sub-types of the global variables
defined in first-shared-library
· --added-vars
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, only display the global variables that were added (defined) to
second-shared-library.
· --no-added-syms
In the resulting report about the differences between first-shared-library and sec‐
ond-shared-library, do not display added functions or variables. Do not display
added functions or variables ELF symbols either. All other kinds of changes are dis‐
played unless they are explicitely forbidden by other options on the command line.
· --no-linkage-name
In the resulting report, do not display the linkage names of the added, removed, or
changed functions or variables.
· --no-show-locs
Do not show information about where in the second shared library the respective
type was changed.
· --no-show-relative-offset-changes
Without this option, when the offset of a data member changes, the change report not
only mentions the older and newer offset, but it also mentions by how many bits the
data member changes. With this option, the latter is not shown.
· --no-unreferenced-symbols
In the resulting report, do not display change information about function and vari‐
able symbols that are not referenced by any debug information. Note that for these
symbols not referenced by any debug information, the change information displayed is
either added or removed symbols.
· --no-default-suppression
Do not load the default suppression specification files.
· --suppressions | --suppr <path-to-suppressions>
Use a suppression specification file located at path-to-suppressions. Note that this
option can appear multiple times on the command line. In that case, all of the pro‐
vided suppression specification files are taken into account.
Please note that, by default, if this option is not provided, then the default sup‐
pression specification files are loaded .
· --drop <regex>
When reading the first-shared-library and second-shared-library ELF input files, drop
the globally defined functions and variables which name match the regular expression
regex. As a result, no change involving these functions or variables will be emitted
in the diff report.
· --drop-fn <regex>
When reading the first-shared-library and second-shared-library ELF input files, drop
the globally defined functions which name match the regular expression regex. As a
result, no change involving these functions will be emitted in the diff report.
· --drop-var <regex>
When reading the first-shared-library and second-shared-library ELF input files, drop
the globally defined variables matching a the regular expression regex.
· --keep <regex>
When reading the first-shared-library and second-shared-library ELF input files, keep
the globally defined functions and variables which names match the regular expression
regex. All other functions and variables are dropped on the floor and will thus not
appear in the resulting diff report.
· --keep-fn <regex>
When reading the first-shared-library and second-shared-library ELF input files, keep
the globally defined functions which name match the regular expression regex. All
other functions are dropped on the floor and will thus not appear in the resulting
diff report.
· --keep-var <regex>
When reading the first-shared-library and second-shared-library ELF input files, keep
the globally defined which names match the regular expression regex. All other vari‐
ables are dropped on the floor and will thus not appear in the resulting diff report.
· --harmless
In the diff report, display only the harmless changes. By default, the harmless
changes are filtered out of the diff report keep the clutter to a minimum and have a
greater chance to spot real ABI issues.
· --no-harmful
In the diff report, do not display the harmful changes. By default, only the harmful
changes are displayed in diff report.
· --redundant
In the diff report, do display redundant changes. A redundant change is a change
that has been displayed elsewhere in the report.
· --no-redundant
In the diff report, do NOT display redundant changes. A redundant change is a change
that has been displayed elsewhere in the report. This option is switched on by
default.
· --no-architecture
Do not take architecture in account when comparing ABIs.
· --no-corpus-path
Do not emit the path attribute for the ABI corpus.
· --leaf-changes-only|-l only show leaf changes, so don’t show impact analysis report.
The typical output of abidiff when comparing two binaries looks like this
$ abidiff libtest-v0.so libtest-v1.so
Functions changes summary: 0 Removed, 1 Changed, 0 Added function
Variables changes summary: 0 Removed, 0 Changed, 0 Added variable
1 function with some indirect sub-type change:
[C]'function void fn(C&)' at test-v1.cc:13:1 has some indirect sub-type changes:
parameter 1 of type 'C&' has sub-type changes:
in referenced type 'struct C' at test-v1.cc:7:1:
type size hasn't changed
1 data member change:
type of 'leaf* C::m0' changed:
in pointed to type 'struct leaf' at test-v1.cc:1:1:
type size changed from 32 to 64 bits
1 data member insertion:
'char leaf::m1', at offset 32 (in bits) at test-v1.cc:4:1
$
So in that example the report emits information about how the data member insertion
change of “struct leaf” is reachable from function “void fn(C&)”. In other words,
the report not only shows the data member change on “struct leaf”, but it also shows
the impact of that change on the function “void fn(C&)”.
In abidiff parlance, the change on “struct leaf” is called a leaf change. So the
--leaf-changes-only --impacted-interfaces options show, well, only the leaf change.
And it goes like this:
$ abidiff -l libtest-v0.so libtest-v1.so
'struct leaf' changed:
type size changed from 32 to 64 bits
1 data member insertion:
'char leaf::m1', at offset 32 (in bits) at test-v1.cc:4:1
one impacted interface:
function void fn(C&)
$
Note how the report ends by showing the list of interfaces impacted by the leaf
change.
Now if you don’t want to see that list of impacted interfaces, then you can just
avoid using the --impacted-interface option. You can learn about that option below,
in any case.
· --impacted-interfaces
When showing leaf changes, this option instructs abidiff to show the list of impacted
interfaces. This option is thus to be used in addition the --leaf-changes-only
option, otherwise, it’s ignored.
· --dump-diff-tree
After the diff report, emit a textual representation of the diff nodes tree used by
the comparison engine to represent the changed functions and variables. That rep‐
resentation is emitted to the error output for debugging purposes. Note that this
diff tree is relevant only to functions and variables that have some sub-type
changes. Added or removed functions and variables do not have any diff nodes tree
associated to them.
· --stats
Emit statistics about various internal things.
· --verbose
Emit verbose logs about the progress of miscellaneous internal things.
RETURN VALUES
The exit code of the abidiff command is either 0 if the ABI of the binaries being compared
are equal, or non-zero if they differ or if the tool encountered an error.
In the later case, the exit code is a 8-bits-wide bit field in which each bit has a spe‐
cific meaning.
The first bit, of value 1, named ABIDIFF_ERROR means there was an error.
The second bit, of value 2, named ABIDIFF_USAGE_ERROR means there was an error in the way
the user invoked the tool. It might be set, for instance, if the user invoked the tool
with an unknown command line switch, with a wrong number or argument, etc. If this bit is
set, then the ABIDIFF_ERROR bit must be set as well.
The third bit, of value 4, named ABIDIFF_ABI_CHANGE means the ABI of the binaries being
compared are different.
The fourth bit, of value 8, named ABIDIFF_ABI_INCOMPATIBLE_CHANGE means the ABI of the
binaries compared are different in an incompatible way. If this bit is set, then the
ABIDIFF_ABI_CHANGE bit must be set as well. If the ABIDIFF_ABI_CHANGE is set and the
ABIDIFF_INCOMPATIBLE_CHANGE is NOT set, then it means that the ABIs being compared might
or might not be compatible. In that case, a human being needs to review the ABI changes
to decide if they are compatible or not.
Note that, at the moment, there are only a few kinds of ABI changes that would result in
setting the flag ABIDIFF_ABI_INCOMPATIBLE_CHANGE. Those ABI changes are either:
· the removal of the symbol of a function or variable that has been defined and
exported.
· the modification of the index of a member of a virtual function table (for C++ pro‐
grams and libraries).
With time, when more ABI change patterns are found to always constitute incompatible ABI
changes, we will adapt the code to recognize those cases and set the ABIDIFF_ABI_INCOMPAT‐
IBLE_CHANGE accordingly. So, if you find such patterns, please let us know.
The remaining bits are not used for the moment.
USAGE EXAMPLES
1. Detecting a change in a sub-type of a function:
$ cat -n test-v0.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
3
4 struct S0
5 {
6 int m0;
7 };
8
9 void
10 foo(S0* /*parameter_name*/)
11 {
12 // do something with parameter_name.
13 }
$
$ cat -n test-v1.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
3
4 struct type_base
5 {
6 int inserted;
7 };
8
9 struct S0 : public type_base
10 {
11 int m0;
12 };
13
14 void
15 foo(S0* /*parameter_name*/)
16 {
17 // do something with parameter_name.
18 }
$
$ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
$ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
$
$ ../build/tools/abidiff libtest-v0.so libtest-v1.so
Functions changes summary: 0 Removed, 1 Changed, 0 Added function
Variables changes summary: 0 Removed, 0 Changed, 0 Added variable
1 function with some indirect sub-type change:
[C]'function void foo(S0*)' has some indirect sub-type changes:
parameter 0 of type 'S0*' has sub-type changes:
in pointed to type 'struct S0':
size changed from 32 to 64 bits
1 base class insertion:
struct type_base
1 data member change:
'int S0::m0' offset changed from 0 to 32
$
2. Detecting another change in a sub-type of a function:
$ cat -n test-v0.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
3
4 struct S0
5 {
6 int m0;
7 };
8
9 void
10 foo(S0& /*parameter_name*/)
11 {
12 // do something with parameter_name.
13 }
$
$ cat -n test-v1.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
3
4 struct S0
5 {
6 char inserted_member;
7 int m0;
8 };
9
10 void
11 foo(S0& /*parameter_name*/)
12 {
13 // do something with parameter_name.
14 }
$
$ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
$ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
$
$ ../build/tools/abidiff libtest-v0.so libtest-v1.so
Functions changes summary: 0 Removed, 1 Changed, 0 Added function
Variables changes summary: 0 Removed, 0 Changed, 0 Added variable
1 function with some indirect sub-type change:
[C]'function void foo(S0&)' has some indirect sub-type changes:
parameter 0 of type 'S0&' has sub-type changes:
in referenced type 'struct S0':
size changed from 32 to 64 bits
1 data member insertion:
'char S0::inserted_member', at offset 0 (in bits)
1 data member change:
'int S0::m0' offset changed from 0 to 32
$
3. Detecting that functions got removed or added to a library:
$ cat -n test-v0.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
3
4 struct S0
5 {
6 int m0;
7 };
8
9 void
10 foo(S0& /*parameter_name*/)
11 {
12 // do something with parameter_name.
13 }
$
$ cat -n test-v1.cc
1 // Compile this with:
2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
3
4 struct S0
5 {
6 char inserted_member;
7 int m0;
8 };
9
10 void
11 bar(S0& /*parameter_name*/)
12 {
13 // do something with parameter_name.
14 }
$
$ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc
$ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc
$
$ ../build/tools/abidiff libtest-v0.so libtest-v1.so
Functions changes summary: 1 Removed, 0 Changed, 1 Added functions
Variables changes summary: 0 Removed, 0 Changed, 0 Added variable
1 Removed function:
'function void foo(S0&)' {_Z3fooR2S0}
1 Added function:
'function void bar(S0&)' {_Z3barR2S0}
$
COPYRIGHT
2014-2018, Red Hat, Inc.
Apr 24, 2018 ABIDIFF(1)