SIMPLE SOLUTIONS

# REMQUO(3POSIX) - Linux man page online | Library functions

Remainder functions.

Chapter
2013
REMQUO(3POSIX) POSIX Programmer's Manual REMQUO(3POSIX)

## PROLOG

This manual page is part of the POSIX Programmer's Manual. The Linux implementation of this interface may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux.

## NAME

remquo, remquof, remquol — remainder functions

## SYNOPSIS

#include <math.h> double remquo(double x, double y, int *quo); float remquof(float x, float y, int *quo); long double remquol(long double x, long double y, int *quo);

## DESCRIPTION

The functionality described on this reference page is aligned with the ISO C standard. Any conflict between the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1‐2008 defers to the ISO C standard. The remquo(), remquof(), and remquol() functions shall compute the same remainder as the remainder(), remainderf(), and remainderl() functions, respectively. In the object pointed to by quo, they store a value whose sign is the sign of x/y and whose magnitude is congru‐ ent modulo 2n to the magnitude of the integral quotient of x/y, where n is an implementa‐ tion-defined integer greater than or equal to 3. If y is zero, the value stored in the object pointed to by quo is unspecified. An application wishing to check for error situations should set errno to zero and call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non- zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.

## RETURN VALUE

These functions shall return x REM y. On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is implementation-defined whether a domain error occurs or zero is returned. If x or y is NaN, a NaN shall be returned. If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and a NaN shall be returned.

## ERRORS

These functions shall fail if: Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non- NaN. If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised. These functions may fail if: Domain Error The y argument is zero. If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised. The following sections are informative.

None.

## APPLICATION USAGE

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

## RATIONALE

These functions are intended for implementing argument reductions which can exploit a few low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an exact representation of the quotient is not practical.

None.