CMAKE-MODULES(7) - Linux man page online | Overview, conventions, and miscellany
CMake Modules Reference.
Chapter
July 13, 2019
CMAKE-MODULES(7) CMake CMAKE-MODULES(7)
@freebsd.org) of this package.
· Mandatory: YES
· Default: none
CPACK_FREEBSD_PACKAGE_ORIGIN
The origin (ports label) of this package; for packages built by CPack outside of
the ports system this is of less importance. The default puts the package somewhere
under misc/, as a stopgap.
· Mandatory: YES
· Default: misc/<package name>
CPACK_FREEBSD_PACKAGE_CATEGORIES
The ports categories where this package lives (if it were to be built from ports).
If none is set a single category is determined based on the package origin.
· Mandatory: YES
· Default: derived from ORIGIN
CPACK_FREEBSD_PACKAGE_DEPS
A list of package origins that should be added as package dependencies. These are
in the form <category>/<packagename>, e.g. x11/libkonq. No version information
needs to be provided (this is not included in the manifest).
· Mandatory: NO
· Default: empty
CPackIFW
This module looks for the location of the command line utilities supplied with the Qt In‐
staller Framework (QtIFW).
The module also defines several commands to control the behavior of the CPack IFW genera‐
tor.
Overview
CPack IFW generator helps you to create online and offline binary cross-platform install‐
ers with a graphical user interface.
CPack IFW generator prepares project installation and generates configuration and meta
information for QtIFW tools.
The QtIFW provides a set of tools and utilities to create installers for the supported
desktop Qt platforms: Linux, Microsoft Windows, and Mac OS X.
You should also install QtIFW to use CPack IFW generator.
Hints
Generally, the CPack IFW generator automatically finds QtIFW tools, but if you don’t use a
default path for installation of the QtIFW tools, the path may be specified in either a
CMake or an environment variable:
CPACK_IFW_ROOT
An CMake variable which specifies the location of the QtIFW tool suite.
The variable will be cached in the CPackConfig.cmake file and used at CPack run‐
time.
QTIFWDIR
An environment variable which specifies the location of the QtIFW tool suite.
NOTE:
The specified path should not contain “bin” at the end (for example: “D:\Dev‐
Tools\QtIFW2.0.5”).
The CPACK_IFW_ROOT variable has a higher priority and overrides the value of the QTIFWDIR
variable.
Internationalization
Some variables and command arguments support internationalization via CMake script. This
is an optional feature.
Installers created by QtIFW tools have built-in support for internationalization and many
phrases are localized to many languages, but this does not apply to the description of the
your components and groups that will be distributed.
Localization of the description of your components and groups is useful for users of your
installers.
A localized variable or argument can contain a single default value, and a set of pairs
the name of the locale and the localized value.
For example:
set(LOCALIZABLE_VARIABLE "Default value"
en "English value"
en_US "American value"
en_GB "Great Britain value"
)
Variables
You can use the following variables to change behavior of CPack IFW generator.
Debug
CPACK_IFW_VERBOSE
Set to ON to enable addition debug output. By default is OFF.
Package
CPACK_IFW_PACKAGE_TITLE
Name of the installer as displayed on the title bar. By default used CPACK_PACK‐
AGE_DESCRIPTION_SUMMARY.
CPACK_IFW_PACKAGE_PUBLISHER
Publisher of the software (as shown in the Windows Control Panel). By default used
CPACK_PACKAGE_VENDOR.
CPACK_IFW_PRODUCT_URL
URL to a page that contains product information on your web site.
CPACK_IFW_PACKAGE_ICON
Filename for a custom installer icon. The actual file is ‘.icns’ (Mac OS X), ‘.ico’
(Windows). No functionality on Unix.
CPACK_IFW_PACKAGE_WINDOW_ICON
Filename for a custom window icon in PNG format for the Installer application.
CPACK_IFW_PACKAGE_LOGO
Filename for a logo is used as QWizard::LogoPixmap.
CPACK_IFW_PACKAGE_WATERMARK
Filename for a watermark is used as QWizard::WatermarkPixmap.
CPACK_IFW_PACKAGE_BANNER
Filename for a banner is used as QWizard::BannerPixmap.
CPACK_IFW_PACKAGE_BACKGROUND
Filename for an image used as QWizard::BackgroundPixmap (only used by MacStyle).
CPACK_IFW_PACKAGE_WIZARD_STYLE
Wizard style to be used (“Modern”, “Mac”, “Aero” or “Classic”).
CPACK_IFW_PACKAGE_WIZARD_DEFAULT_WIDTH
Default width of the wizard in pixels. Setting a banner image will override this.
CPACK_IFW_PACKAGE_WIZARD_DEFAULT_HEIGHT
Default height of the wizard in pixels. Setting a watermark image will override
this.
CPACK_IFW_PACKAGE_TITLE_COLOR
Color of the titles and subtitles (takes an HTML color code, such as “#88FF33”).
CPACK_IFW_PACKAGE_START_MENU_DIRECTORY
Name of the default program group for the product in the Windows Start menu.
By default used CPACK_IFW_PACKAGE_NAME.
CPACK_IFW_TARGET_DIRECTORY
Default target directory for installation. By default used “@Applications‐
Dir@/CPACK_PACKAGE_INSTALL_DIRECTORY”
You can use predefined variables.
CPACK_IFW_ADMIN_TARGET_DIRECTORY
Default target directory for installation with administrator rights.
You can use predefined variables.
CPACK_IFW_PACKAGE_GROUP
The group, which will be used to configure the root package
CPACK_IFW_PACKAGE_NAME
The root package name, which will be used if configuration group is not specified
CPACK_IFW_PACKAGE_MAINTENANCE_TOOL_NAME
Filename of the generated maintenance tool. The platform-specific executable file
extension is appended.
By default used QtIFW defaults (maintenancetool).
CPACK_IFW_PACKAGE_MAINTENANCE_TOOL_INI_FILE
Filename for the configuration of the generated maintenance tool.
By default used QtIFW defaults (maintenancetool.ini).
CPACK_IFW_PACKAGE_ALLOW_NON_ASCII_CHARACTERS
Set to ON if the installation path can contain non-ASCII characters.
Is ON for QtIFW less 2.0 tools.
CPACK_IFW_PACKAGE_ALLOW_SPACE_IN_PATH
Set to OFF if the installation path cannot contain space characters.
Is ON for QtIFW less 2.0 tools.
CPACK_IFW_PACKAGE_CONTROL_SCRIPT
Filename for a custom installer control script.
CPACK_IFW_PACKAGE_RESOURCES
List of additional resources (‘.qrc’ files) to include in the installer binary.
You can use cpack_ifw_add_package_resources() command to resolve relative paths.
CPACK_IFW_PACKAGE_FILE_EXTENSION
The target binary extension.
On Linux, the name of the target binary is automatically extended with ‘.run’, if
you do not specify the extension.
On Windows, the target is created as an application with the extension ‘.exe’,
which is automatically added, if not supplied.
On Mac, the target is created as an DMG disk image with the extension ‘.dmg’, which
is automatically added, if not supplied.
CPACK_IFW_REPOSITORIES_ALL
The list of remote repositories.
The default value of this variable is computed by CPack and contains all reposito‐
ries added with command cpack_ifw_add_repository() or updated with command
cpack_ifw_update_repository().
CPACK_IFW_DOWNLOAD_ALL
If this is ON all components will be downloaded. By default is OFF or used value
from CPACK_DOWNLOAD_ALL if set
Components
CPACK_IFW_RESOLVE_DUPLICATE_NAMES
Resolve duplicate names when installing components with groups.
CPACK_IFW_PACKAGES_DIRECTORIES
Additional prepared packages dirs that will be used to resolve dependent compo‐
nents.
CPACK_IFW_REPOSITORIES_DIRECTORIES
Additional prepared repository dirs that will be used to resolve and repack depen‐
dent components. This feature available only since QtIFW 3.1.
Tools
CPACK_IFW_FRAMEWORK_VERSION
The version of used QtIFW tools.
CPACK_IFW_BINARYCREATOR_EXECUTABLE
The path to “binarycreator” command line client.
This variable is cached and may be configured if needed.
CPACK_IFW_REPOGEN_EXECUTABLE
The path to “repogen” command line client.
This variable is cached and may be configured if needed.
CPACK_IFW_INSTALLERBASE_EXECUTABLE
The path to “installerbase” installer executable base.
This variable is cached and may be configured if needed.
CPACK_IFW_DEVTOOL_EXECUTABLE
The path to “devtool” command line client.
This variable is cached and may be configured if needed.
Commands
The module defines the following commands:
cpack_ifw_configure_component
Sets the arguments specific to the CPack IFW generator.
cpack_ifw_configure_component(<compname> [COMMON] [ESSENTIAL] [VIRTUAL]
[FORCED_INSTALLATION] [REQUIRES_ADMIN_RIGHTS]
[NAME <name>]
[DISPLAY_NAME <display_name>] # Note: Internationalization supp ↲
orted
[DESCRIPTION <description>] # Note: Internationalization suppor ↲
ted
[UPDATE_TEXT <update_text>]
[VERSION <version>]
[RELEASE_DATE <release_date>]
[SCRIPT <script>]
[PRIORITY|SORTING_PRIORITY <sorting_priority>] # Note: PRIORITY ↲
is deprecated
[DEPENDS|DEPENDENCIES <com_id> ...]
[AUTO_DEPEND_ON <comp_id> ...]
[LICENSES <display_name> <file_path> ...]
[DEFAULT <value>]
[USER_INTERFACES <file_path> <file_path> ...]
[TRANSLATIONS <file_path> <file_path> ...]
[REPLACES <comp_id> ...]
[CHECKABLE <value>])
This command should be called after cpack_add_component() command.
COMMON if set, then the component will be packaged and installed as part of a group
to which it belongs.
ESSENTIAL
if set, then the package manager stays disabled until that component is
updated.
VIRTUAL
if set, then the component will be hidden from the installer. It is a
equivalent of the HIDDEN option from the cpack_add_component() command.
FORCED_INSTALLATION
if set, then the component must always be installed. It is a equivalent of
the REQUARED option from the cpack_add_component() command.
REQUIRES_ADMIN_RIGHTS
set it if the component needs to be installed with elevated permissions.
NAME is used to create domain-like identification for this component. By default
used origin component name.
DISPLAY_NAME
set to rewrite original name configured by cpack_add_component() command.
DESCRIPTION
set to rewrite original description configured by cpack_add_component() com‐
mand.
UPDATE_TEXT
will be added to the component description if this is an update to the com‐
ponent.
VERSION
is version of component. By default used CPACK_PACKAGE_VERSION.
RELEASE_DATE
keep empty to auto generate.
SCRIPT is a relative or absolute path to operations script for this component.
PRIORITY | SORTING_PRIORITY
is priority of the component in the tree. The PRIORITY option is deprecated
and will be removed in a future version of CMake. Please use SORTING_PRIOR‐
ITY option instead.
DEPENDS | DEPENDENCIES
list of dependency component or component group identifiers in QtIFW style.
AUTO_DEPEND_ON
list of identifiers of component or component group in QtIFW style that this
component has an automatic dependency on.
LICENSES
pair of <display_name> and <file_path> of license text for this component.
You can specify more then one license.
DEFAULT
Possible values are: TRUE, FALSE, and SCRIPT. Set to FALSE to disable the
component in the installer or to SCRIPT to resolved during runtime (don’t
forget add the file of the script as a value of the SCRIPT option).
USER_INTERFACES
is a list of <file_path> (‘.ui’ files) representing pages to load.
TRANSLATIONS
is a list of <file_path> (‘.qm’ files) representing translations to load.
REPLACES
list of identifiers of component or component group to replace.
CHECKABLE
Possible values are: TRUE, FALSE. Set to FALSE if you want to hide the
checkbox for an item. This is useful when only a few subcomponents should
be selected instead of all.
cpack_ifw_configure_component_group
Sets the arguments specific to the CPack IFW generator.
cpack_ifw_configure_component_group(<groupname> [VIRTUAL]
[FORCED_INSTALLATION] [REQUIRES_ADMIN_RIGHTS]
[NAME <name>]
[DISPLAY_NAME <display_name>] # Note: Internationalization supp ↲
orted
[DESCRIPTION <description>] # Note: Internationalization suppor ↲
ted
[UPDATE_TEXT <update_text>]
[VERSION <version>]
[RELEASE_DATE <release_date>]
[SCRIPT <script>]
[PRIORITY|SORTING_PRIORITY <sorting_priority>] # Note: PRIORITY ↲
is deprecated
[DEPENDS|DEPENDENCIES <com_id> ...]
[AUTO_DEPEND_ON <comp_id> ...]
[LICENSES <display_name> <file_path> ...]
[DEFAULT <value>]
[USER_INTERFACES <file_path> <file_path> ...]
[TRANSLATIONS <file_path> <file_path> ...]
[REPLACES <comp_id> ...]
[CHECKABLE <value>])
This command should be called after cpack_add_component_group() command.
VIRTUAL
if set, then the group will be hidden from the installer. Note that setting
this on a root component does not work.
FORCED_INSTALLATION
if set, then the group must always be installed.
REQUIRES_ADMIN_RIGHTS
set it if the component group needs to be installed with elevated permis‐
sions.
NAME is used to create domain-like identification for this component group. By
default used origin component group name.
DISPLAY_NAME
set to rewrite original name configured by cpack_add_component_group() com‐
mand.
DESCRIPTION
set to rewrite original description configured by cpack_add_compo‐
nent_group() command.
UPDATE_TEXT
will be added to the component group description if this is an update to the
component group.
VERSION
is version of component group. By default used CPACK_PACKAGE_VERSION.
RELEASE_DATE
keep empty to auto generate.
SCRIPT is a relative or absolute path to operations script for this component
group.
PRIORITY | SORTING_PRIORITY
is priority of the component group in the tree. The PRIORITY option is dep‐
recated and will be removed in a future version of CMake. Please use SORT‐
ING_PRIORITY option instead.
DEPENDS | DEPENDENCIES
list of dependency component or component group identifiers in QtIFW style.
AUTO_DEPEND_ON
list of identifiers of component or component group in QtIFW style that this
component group has an automatic dependency on.
LICENSES
pair of <display_name> and <file_path> of license text for this component
group. You can specify more then one license.
DEFAULT
Possible values are: TRUE, FALSE, and SCRIPT. Set to TRUE to preselect the
group in the installer (this takes effect only on groups that have no visi‐
ble child components) or to SCRIPT to resolved during runtime (don’t forget
add the file of the script as a value of the SCRIPT option).
USER_INTERFACES
is a list of <file_path> (‘.ui’ files) representing pages to load.
TRANSLATIONS
is a list of <file_path> (‘.qm’ files) representing translations to load.
REPLACES
list of identifiers of component or component group to replace.
CHECKABLE
Possible values are: TRUE, FALSE. Set to FALSE if you want to hide the
checkbox for an item. This is useful when only a few subcomponents should
be selected instead of all.
cpack_ifw_add_repository
Add QtIFW specific remote repository to binary installer.
cpack_ifw_add_repository(<reponame> [DISABLED]
URL <url>
[USERNAME <username>]
[PASSWORD <password>]
[DISPLAY_NAME <display_name>])
This command will also add the <reponame> repository to a variable
CPACK_IFW_REPOSITORIES_ALL.
DISABLED
if set, then the repository will be disabled by default.
URL is points to a list of available components.
USERNAME
is used as user on a protected repository.
PASSWORD
is password to use on a protected repository.
DISPLAY_NAME
is string to display instead of the URL.
cpack_ifw_update_repository
Update QtIFW specific repository from remote repository.
cpack_ifw_update_repository(<reponame>
[[ADD|REMOVE] URL <url>]|
[REPLACE OLD_URL <old_url> NEW_URL <new_url>]]
[USERNAME <username>]
[PASSWORD <password>]
[DISPLAY_NAME <display_name>])
This command will also add the <reponame> repository to a variable
CPACK_IFW_REPOSITORIES_ALL.
URL is points to a list of available components.
OLD_URL
is points to a list that will replaced.
NEW_URL
is points to a list that will replace to.
USERNAME
is used as user on a protected repository.
PASSWORD
is password to use on a protected repository.
DISPLAY_NAME
is string to display instead of the URL.
cpack_ifw_add_package_resources
Add additional resources in the installer binary.
cpack_ifw_add_package_resources(<file_path> <file_path> ...)
This command will also add the specified files to a variable
CPACK_IFW_PACKAGE_RESOURCES.
Example usage
set(CPACK_PACKAGE_NAME "MyPackage")
set(CPACK_PACKAGE_DESCRIPTION_SUMMARY "MyPackage Installation Example")
set(CPACK_PACKAGE_VERSION "1.0.0") # Version of installer
include(CPack)
include(CPackIFW)
cpack_add_component(myapp
DISPLAY_NAME "MyApp"
DESCRIPTION "My Application") # Default description
cpack_ifw_configure_component(myapp
DESCRIPTION ru_RU "Мое Приложение" # Localized description
VERSION "1.2.3" # Version of component
SCRIPT "operations.qs")
cpack_add_component(mybigplugin
DISPLAY_NAME "MyBigPlugin"
DESCRIPTION "My Big Downloadable Plugin"
DOWNLOADED)
cpack_ifw_add_repository(myrepo
URL "http://example.com/ifw/repo/myapp"
DISPLAY_NAME "My Application Repository")
Online installer
By default CPack IFW generator makes offline installer. This means that all components
will be packaged into a binary file.
To make a component downloaded, you must set the DOWNLOADED option in cpack_add_compo‐
nent().
Then you would use the command cpack_configure_downloads(). If you set ALL option all
components will be downloaded.
You also can use command cpack_ifw_add_repository() and variable CPACK_IFW_DOWNLOAD_ALL
for more specific configuration.
CPack IFW generator creates “repository” dir in current binary dir. You would copy content
of this dir to specified site (url).
See Also
Qt Installer Framework Manual:
· Index page: http://doc.qt.io/qtinstallerframework/index.html
· Component Scripting: http://doc.qt.io/qtinstallerframework/scripting.html
· Predefined Variables:
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
· Promoting Updates: http://doc.qt.io/qtinstallerframework/ifw-updates.html
Download Qt Installer Framework for you platform from Qt site:
http://download.qt.io/official_releases/qt-installer-framework
CPackIFWConfigureFile
The module defines configure_file() similar command to configure file templates prepared
in QtIFW/SDK/Creator style.
Commands
The module defines the following commands:
cpack_ifw_configure_file
Copy a file to another location and modify its contents.
cpack_ifw_configure_file(<input> <output>)
Copies an <input> file to an <output> file and substitutes variable values refer‐
enced as %{VAR} or %VAR% in the input file content. Each variable reference will
be replaced with the current value of the variable, or the empty string if the
variable is not defined.
CPackNSIS
CPack NSIS generator specific options
Variables specific to CPack NSIS generator
The following variables are specific to the graphical installers built on Windows using
the Nullsoft Installation System.
CPACK_NSIS_INSTALL_ROOT
The default installation directory presented to the end user by the NSIS installer
is under this root dir. The full directory presented to the end user is:
${CPACK_NSIS_INSTALL_ROOT}/${CPACK_PACKAGE_INSTALL_DIRECTORY}
CPACK_NSIS_MUI_ICON
An icon filename. The name of a *.ico file used as the main icon for the generated
install program.
CPACK_NSIS_MUI_UNIICON
An icon filename. The name of a *.ico file used as the main icon for the generated
uninstall program.
CPACK_NSIS_INSTALLER_MUI_ICON_CODE
undocumented.
CPACK_NSIS_MUI_WELCOMEFINISHPAGE_BITMAP
The filename of a bitmap to use as the NSIS MUI_WELCOMEFINISHPAGE_BITMAP.
CPACK_NSIS_MUI_UNWELCOMEFINISHPAGE_BITMAP
The filename of a bitmap to use as the NSIS MUI_UNWELCOMEFINISHPAGE_BITMAP.
CPACK_NSIS_EXTRA_PREINSTALL_COMMANDS
Extra NSIS commands that will be added to the beginning of the install Section,
before your install tree is available on the target system.
CPACK_NSIS_EXTRA_INSTALL_COMMANDS
Extra NSIS commands that will be added to the end of the install Section, after
your install tree is available on the target system.
CPACK_NSIS_EXTRA_UNINSTALL_COMMANDS
Extra NSIS commands that will be added to the uninstall Section, before your
install tree is removed from the target system.
CPACK_NSIS_COMPRESSOR
The arguments that will be passed to the NSIS SetCompressor command.
CPACK_NSIS_ENABLE_UNINSTALL_BEFORE_INSTALL
Ask about uninstalling previous versions first. If this is set to “ON”, then an
installer will look for previous installed versions and if one is found, ask the
user whether to uninstall it before proceeding with the install.
CPACK_NSIS_MODIFY_PATH
Modify PATH toggle. If this is set to “ON”, then an extra page will appear in the
installer that will allow the user to choose whether the program directory should
be added to the system PATH variable.
CPACK_NSIS_DISPLAY_NAME
The display name string that appears in the Windows Add/Remove Program control
panel
CPACK_NSIS_PACKAGE_NAME
The title displayed at the top of the installer.
CPACK_NSIS_INSTALLED_ICON_NAME
A path to the executable that contains the installer icon.
CPACK_NSIS_HELP_LINK
URL to a web site providing assistance in installing your application.
CPACK_NSIS_URL_INFO_ABOUT
URL to a web site providing more information about your application.
CPACK_NSIS_CONTACT
Contact information for questions and comments about the installation process.
CPACK_NSIS_<compName>_INSTALL_DIRECTORY
Custom install directory for the specified component <compName> instead of $INST‐
DIR.
CPACK_NSIS_CREATE_ICONS_EXTRA
Additional NSIS commands for creating start menu shortcuts.
CPACK_NSIS_DELETE_ICONS_EXTRA
Additional NSIS commands to uninstall start menu shortcuts.
CPACK_NSIS_EXECUTABLES_DIRECTORY
Creating NSIS start menu links assumes that they are in ‘bin’ unless this variable
is set. For example, you would set this to ‘exec’ if your executables are in an
exec directory.
CPACK_NSIS_MUI_FINISHPAGE_RUN
Specify an executable to add an option to run on the finish page of the NSIS in‐
staller.
CPACK_NSIS_MENU_LINKS
Specify links in [application] menu. This should contain a list of pair “link”
“link name”. The link may be an URL or a path relative to installation prefix.
Like:
set(CPACK_NSIS_MENU_LINKS
"doc/cmake-@CMake_VERSION_MAJOR@.@CMake_VERSION_MINOR@/cmake.html"
"CMake Help" "https://cmake.org" "CMake Web Site")
CPackPackageMaker
PackageMaker CPack generator (Mac OS X).
Variables specific to CPack PackageMaker generator
The following variable is specific to installers built on Mac OS X using PackageMaker:
CPACK_OSX_PACKAGE_VERSION
The version of Mac OS X that the resulting PackageMaker archive should be compati‐
ble with. Different versions of Mac OS X support different features. For example,
CPack can only build component-based installers for Mac OS X 10.4 or newer, and can
only build installers that download component son-the-fly for Mac OS X 10.5 or
newer. If left blank, this value will be set to the minimum version of Mac OS X
that supports the requested features. Set this variable to some value (e.g., 10.4)
only if you want to guarantee that your installer will work on that version of Mac
OS X, and don’t mind missing extra features available in the installer shipping
with later versions of Mac OS X.
CPackProductBuild
productbuild CPack generator (Mac OS X).
Variables specific to CPack productbuild generator
The following variable is specific to installers built on Mac OS X using productbuild:
CPACK_COMMAND_PRODUCTBUILD
Path to the productbuild(1) command used to generate a product archive for the OS X
Installer or Mac App Store. This variable can be used to override the automati‐
cally detected command (or specify its location if the auto-detection fails to find
it.)
CPACK_PRODUCTBUILD_IDENTITY_NAME
Adds a digital signature to the resulting package.
CPACK_PRODUCTBUILD_KEYCHAIN_PATH
Specify a specific keychain to search for the signing identity.
CPACK_COMMAND_PKGBUILD
Path to the pkgbuild(1) command used to generate an OS X component package on OS X.
This variable can be used to override the automatically detected command (or spec‐
ify its location if the auto-detection fails to find it.)
CPACK_PKGBUILD_IDENTITY_NAME
Adds a digital signature to the resulting package.
CPACK_PKGBUILD_KEYCHAIN_PATH
Specify a specific keychain to search for the signing identity.
CPACK_PRODUCTBUILD_RESOURCES_DIR
If specified the productbuild generator copies files from this directory (including
subdirectories) to the Resources directory. This is done before the
CPACK_RESOURCE_FILE_WELCOME, CPACK_RESOURCE_FILE_README, and
CPACK_RESOURCE_FILE_LICENSE files are copied.
CPackRPM
The built in (binary) CPack RPM generator (Unix only)
Variables specific to CPack RPM generator
CPackRPM may be used to create RPM packages using CPack. CPackRPM is a CPack generator
thus it uses the CPACK_XXX variables used by CPack.
CPackRPM has specific features which are controlled by the specifics CPACK_RPM_XXX vari‐
ables.
CPACK_RPM_<COMPONENT>_XXXX variables may be used in order to have component specific val‐
ues. Note however that <COMPONENT> refers to the grouping name written in upper case. It
may be either a component name or a component GROUP name. Usually those variables corre‐
spond to RPM spec file entities. One may find information about spec files here
http://www.rpm.org/wiki/Docs
NOTE:
<COMPONENT> part of variables is preferred to be in upper case (for e.g. if component
is named foo then use CPACK_RPM_FOO_XXXX variable name format) as is with other
CPACK_<COMPONENT>_XXXX variables. For the purposes of back compatibility (CMake/CPack
version 3.5 and lower) support for same cased component (e.g. fOo would be used as
CPACK_RPM_fOo_XXXX) is still supported for variables defined in older versions of
CMake/CPack but is not guaranteed for variables that will be added in the future. For
the sake of back compatibility same cased component variables also override upper cased
versions where both are present.
Here are some CPackRPM wiki resources that are here for historic reasons and are no longer
maintained but may still prove useful:
· https://cmake.org/Wiki/CMake:CPackConfiguration
· https://cmake.org/Wiki/CMake:CPackPackageGenerators#RPM_.28Unix_Only.29
List of CPackRPM specific variables:
CPACK_RPM_COMPONENT_INSTALL
Enable component packaging for CPackRPM
· Mandatory : NO
· Default : OFF
If enabled (ON) multiple packages are generated. By default a single package con‐
taining files of all components is generated.
CPACK_RPM_PACKAGE_SUMMARY
CPACK_RPM_<component>_PACKAGE_SUMMARY
The RPM package summary.
· Mandatory : YES
· Default : CPACK_PACKAGE_DESCRIPTION_SUMMARY
CPACK_RPM_PACKAGE_NAME
CPACK_RPM_<component>_PACKAGE_NAME
The RPM package name.
· Mandatory : YES
· Default : CPACK_PACKAGE_NAME
CPACK_RPM_FILE_NAME
CPACK_RPM_<component>_FILE_NAME
Package file name.
· Mandatory : YES
·
Default
<CPACK_PACKAGE_FILE_NAME>[-<component>].rpm with spaces replaced by ‘-‘
This may be set to RPM-DEFAULT to allow rpmbuild tool to generate package file name
by itself. Alternatively provided package file name must end with .rpm suffix.
NOTE:
By using user provided spec file, rpm macro extensions such as for generating
debuginfo packages or by simply using multiple components more than one rpm file
may be generated, either from a single spec file or from multiple spec files
(each component execution produces it’s own spec file). In such cases duplicate
file names may occur as a result of this variable setting or spec file content
structure. Duplicate files get overwritten and it is up to the packager to set
the variables in a manner that will prevent such errors.
CPACK_RPM_MAIN_COMPONENT
Main component that is packaged without component suffix.
· Mandatory : NO
· Default : -
This variable can be set to any component or group name so that component or group
rpm package is generated without component suffix in filename and package name.
CPACK_RPM_PACKAGE_EPOCH
The RPM package epoch
· Mandatory : No
· Default : -
Optional number that should be incremented when changing versioning schemas or fix‐
ing mistakes in the version numbers of older packages.
CPACK_RPM_PACKAGE_VERSION
The RPM package version.
· Mandatory : YES
· Default : CPACK_PACKAGE_VERSION
CPACK_RPM_PACKAGE_ARCHITECTURE
CPACK_RPM_<component>_PACKAGE_ARCHITECTURE
The RPM package architecture.
· Mandatory : YES
· Default : Native architecture output by uname -m
This may be set to noarch if you know you are building a noarch package.
CPACK_RPM_PACKAGE_RELEASE
The RPM package release.
· Mandatory : YES
· Default : 1
This is the numbering of the RPM package itself, i.e. the version of the packaging
and not the version of the content (see CPACK_RPM_PACKAGE_VERSION). One may change
the default value if the previous packaging was buggy and/or you want to put here a
fancy Linux distro specific numbering.
NOTE:
This is the string that goes into the RPM Release: field. Some distros (e.g. Fedora,
CentOS) require 1%{?dist} format and not just a number. %{?dist} part can be added by
setting CPACK_RPM_PACKAGE_RELEASE_DIST.
CPACK_RPM_PACKAGE_RELEASE_DIST
The dist tag that is added RPM Release: field.
· Mandatory : NO
· Default : OFF
This is the reported %{dist} tag from the current distribution or empty %{dist} if
RPM macro is not set. If this variable is set then RPM Release: field value is set
to ${CPACK_RPM_PACKAGE_RELEASE}%{?dist}.
CPACK_RPM_PACKAGE_LICENSE
The RPM package license policy.
· Mandatory : YES
· Default : “unknown”
CPACK_RPM_PACKAGE_GROUP
CPACK_RPM_<component>_PACKAGE_GROUP
The RPM package group.
· Mandatory : YES
· Default : “unknown”
CPACK_RPM_PACKAGE_VENDOR
The RPM package vendor.
· Mandatory : YES
· Default : CPACK_PACKAGE_VENDOR if set or “unknown”
CPACK_RPM_PACKAGE_URL
CPACK_RPM_<component>_PACKAGE_URL
The projects URL.
· Mandatory : NO
· Default : -
CPACK_RPM_PACKAGE_DESCRIPTION
CPACK_RPM_<component>_PACKAGE_DESCRIPTION
RPM package description.
· Mandatory : YES
· Default : CPACK_COMPONENT_<compName>_DESCRIPTION (component based installers
only) if set, CPACK_PACKAGE_DESCRIPTION_FILE if set or “no package description
available”
CPACK_RPM_COMPRESSION_TYPE
RPM compression type.
· Mandatory : NO
· Default : -
May be used to override RPM compression type to be used to build the RPM. For exam‐
ple some Linux distribution now default to lzma or xz compression whereas older
cannot use such RPM. Using this one can enforce compression type to be used.
Possible values are:
· lzma
· xz
· bzip2
· gzip
CPACK_RPM_PACKAGE_AUTOREQ
CPACK_RPM_<component>_PACKAGE_AUTOREQ
RPM spec autoreq field.
· Mandatory : NO
· Default : -
May be used to enable (1, yes) or disable (0, no) automatic shared libraries depen‐
dency detection. Dependencies are added to requires list.
NOTE:
By default automatic dependency detection is enabled by rpm generator.
CPACK_RPM_PACKAGE_AUTOPROV
CPACK_RPM_<component>_PACKAGE_AUTOPROV
RPM spec autoprov field.
· Mandatory : NO
· Default : -
May be used to enable (1, yes) or disable (0, no) automatic listing of shared
libraries that are provided by the package. Shared libraries are added to provides
list.
NOTE:
By default automatic provides detection is enabled by rpm generator.
CPACK_RPM_PACKAGE_AUTOREQPROV
CPACK_RPM_<component>_PACKAGE_AUTOREQPROV
RPM spec autoreqprov field.
· Mandatory : NO
· Default : -
Variable enables/disables autoreq and autoprov at the same time. See
CPACK_RPM_PACKAGE_AUTOREQ and CPACK_RPM_PACKAGE_AUTOPROV for more details.
NOTE:
By default automatic detection feature is enabled by rpm.
CPACK_RPM_PACKAGE_REQUIRES
CPACK_RPM_<component>_PACKAGE_REQUIRES
RPM spec requires field.
· Mandatory : NO
· Default : -
May be used to set RPM dependencies (requires). Note that you must enclose the com‐
plete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_REQUIRES "python >= 2.5.0, cmake >= 2.8")
The required package list of an RPM file could be printed with:
rpm -qp --requires file.rpm
CPACK_RPM_PACKAGE_CONFLICTS
CPACK_RPM_<component>_PACKAGE_CONFLICTS
RPM spec conflicts field.
· Mandatory : NO
· Default : -
May be used to set negative RPM dependencies (conflicts). Note that you must
enclose the complete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_CONFLICTS "libxml2")
The conflicting package list of an RPM file could be printed with:
rpm -qp --conflicts file.rpm
CPACK_RPM_PACKAGE_REQUIRES_PRE
CPACK_RPM_<component>_PACKAGE_REQUIRES_PRE
RPM spec requires(pre) field.
· Mandatory : NO
· Default : -
May be used to set RPM preinstall dependencies (requires(pre)). Note that you must
enclose the complete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_REQUIRES_PRE "shadow-utils, initscripts")
CPACK_RPM_PACKAGE_REQUIRES_POST
CPACK_RPM_<component>_PACKAGE_REQUIRES_POST
RPM spec requires(post) field.
· Mandatory : NO
· Default : -
May be used to set RPM postinstall dependencies (requires(post)). Note that you
must enclose the complete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_REQUIRES_POST "shadow-utils, initscripts")
CPACK_RPM_PACKAGE_REQUIRES_POSTUN
CPACK_RPM_<component>_PACKAGE_REQUIRES_POSTUN
RPM spec requires(postun) field.
· Mandatory : NO
· Default : -
May be used to set RPM postuninstall dependencies (requires(postun)). Note that you
must enclose the complete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_REQUIRES_POSTUN "shadow-utils, initscripts")
CPACK_RPM_PACKAGE_REQUIRES_PREUN
CPACK_RPM_<component>_PACKAGE_REQUIRES_PREUN
RPM spec requires(preun) field.
· Mandatory : NO
· Default : -
May be used to set RPM preuninstall dependencies (requires(preun)). Note that you
must enclose the complete requires string between quotes, for example:
set(CPACK_RPM_PACKAGE_REQUIRES_PREUN "shadow-utils, initscripts")
CPACK_RPM_PACKAGE_SUGGESTS
CPACK_RPM_<component>_PACKAGE_SUGGESTS
RPM spec suggest field.
· Mandatory : NO
· Default : -
May be used to set weak RPM dependencies (suggests). Note that you must enclose the
complete requires string between quotes.
CPACK_RPM_PACKAGE_PROVIDES
CPACK_RPM_<component>_PACKAGE_PROVIDES
RPM spec provides field.
· Mandatory : NO
· Default : -
May be used to set RPM dependencies (provides). The provided package list of an RPM
file could be printed with:
rpm -qp --provides file.rpm
CPACK_RPM_PACKAGE_OBSOLETES
CPACK_RPM_<component>_PACKAGE_OBSOLETES
RPM spec obsoletes field.
· Mandatory : NO
· Default : -
May be used to set RPM packages that are obsoleted by this one.
CPACK_RPM_PACKAGE_RELOCATABLE
build a relocatable RPM.
· Mandatory : NO
· Default : CPACK_PACKAGE_RELOCATABLE
If this variable is set to TRUE or ON CPackRPM will try to build a relocatable RPM
package. A relocatable RPM may be installed using:
rpm --prefix or --relocate
in order to install it at an alternate place see rpm(8). Note that currently this
may fail if CPACK_SET_DESTDIR is set to ON. If CPACK_SET_DESTDIR is set then you
will get a warning message but if there is file installed with absolute path you’ll
get unexpected behavior.
CPACK_RPM_SPEC_INSTALL_POST
Deprecated - use CPACK_RPM_POST_INSTALL_SCRIPT_FILE instead.
· Mandatory : NO
· Default : -
· Deprecated: YES
This way of specifying post-install script is deprecated, use
CPACK_RPM_POST_INSTALL_SCRIPT_FILE. May be used to set an RPM post-install command
inside the spec file. For example setting it to /bin/true may be used to prevent
rpmbuild to strip binaries.
CPACK_RPM_SPEC_MORE_DEFINE
RPM extended spec definitions lines.
· Mandatory : NO
· Default : -
May be used to add any %define lines to the generated spec file.
CPACK_RPM_PACKAGE_DEBUG
Toggle CPackRPM debug output.
· Mandatory : NO
· Default : -
May be set when invoking cpack in order to trace debug information during CPack RPM
run. For example you may launch CPack like this:
cpack -D CPACK_RPM_PACKAGE_DEBUG=1 -G RPM
CPACK_RPM_USER_BINARY_SPECFILE
CPACK_RPM_<componentName>_USER_BINARY_SPECFILE
A user provided spec file.
· Mandatory : NO
· Default : -
May be set by the user in order to specify a USER binary spec file to be used by
CPackRPM instead of generating the file. The specified file will be processed by
configure_file( @ONLY).
CPACK_RPM_GENERATE_USER_BINARY_SPECFILE_TEMPLATE
Spec file template.
· Mandatory : NO
· Default : -
If set CPack will generate a template for USER specified binary spec file and stop
with an error. For example launch CPack like this:
cpack -D CPACK_RPM_GENERATE_USER_BINARY_SPECFILE_TEMPLATE=1 -G RPM
The user may then use this file in order to hand-craft is own binary spec file
which may be used with CPACK_RPM_USER_BINARY_SPECFILE.
CPACK_RPM_PRE_INSTALL_SCRIPT_FILE
CPACK_RPM_PRE_UNINSTALL_SCRIPT_FILE
Path to file containing pre (un)install script.
· Mandatory : NO
· Default : -
May be used to embed a pre (un)installation script in the spec file. The referred
script file (or both) will be read and directly put after the %pre or %preun sec‐
tion If CPACK_RPM_COMPONENT_INSTALL is set to ON the (un)install script for each
component can be overridden with CPACK_RPM_<COMPONENT>_PRE_INSTALL_SCRIPT_FILE and
CPACK_RPM_<COMPONENT>_PRE_UNINSTALL_SCRIPT_FILE. One may verify which scriptlet
has been included with:
rpm -qp --scripts package.rpm
CPACK_RPM_POST_INSTALL_SCRIPT_FILE
CPACK_RPM_POST_UNINSTALL_SCRIPT_FILE
Path to file containing post (un)install script.
· Mandatory : NO
· Default : -
May be used to embed a post (un)installation script in the spec file. The referred
script file (or both) will be read and directly put after the %post or %postun sec‐
tion. If CPACK_RPM_COMPONENT_INSTALL is set to ON the (un)install script for each
component can be overridden with CPACK_RPM_<COMPONENT>_POST_INSTALL_SCRIPT_FILE and
CPACK_RPM_<COMPONENT>_POST_UNINSTALL_SCRIPT_FILE. One may verify which scriptlet
has been included with:
rpm -qp --scripts package.rpm
CPACK_RPM_USER_FILELIST
CPACK_RPM_<COMPONENT>_USER_FILELIST
· Mandatory : NO
· Default : -
May be used to explicitly specify %(<directive>) file line in the spec file. Like
%config(noreplace) or any other directive that be found in the %files section. You
can have multiple directives per line, as in %attr(600,root,root) %config(nore‐
place). Since CPackRPM is generating the list of files (and directories) the user
specified files of the CPACK_RPM_<COMPONENT>_USER_FILELIST list will be removed
from the generated list. If referring to directories do not add a trailing slash.
CPACK_RPM_CHANGELOG_FILE
RPM changelog file.
· Mandatory : NO
· Default : -
May be used to embed a changelog in the spec file. The referred file will be read
and directly put after the %changelog section.
CPACK_RPM_EXCLUDE_FROM_AUTO_FILELIST
list of path to be excluded.
· Mandatory : NO
·
Default
/etc /etc/init.d /usr /usr/bin /usr/include /usr/lib /usr/libx32
/usr/lib64 /usr/share /usr/share/aclocal /usr/share/doc
May be used to exclude path (directories or files) from the auto-generated list of
paths discovered by CPack RPM. The defaut value contains a reasonable set of values
if the variable is not defined by the user. If the variable is defined by the user
then CPackRPM will NOT any of the default path. If you want to add some path to the
default list then you can use CPACK_RPM_EXCLUDE_FROM_AUTO_FILELIST_ADDITION vari‐
able.
CPACK_RPM_EXCLUDE_FROM_AUTO_FILELIST_ADDITION
additional list of path to be excluded.
· Mandatory : NO
· Default : -
May be used to add more exclude path (directories or files) from the initial
default list of excluded paths. See CPACK_RPM_EXCLUDE_FROM_AUTO_FILELIST.
CPACK_RPM_RELOCATION_PATHS
Packages relocation paths list.
· Mandatory : NO
· Default : -
May be used to specify more than one relocation path per relocatable RPM. Variable
contains a list of relocation paths that if relative are prefixed by the value of
CPACK_RPM_<COMPONENT>_PACKAGE_PREFIX or by the value of CPACK_PACKAG‐
ING_INSTALL_PREFIX if the component version is not provided. Variable is not com‐
ponent based as its content can be used to set a different path prefix for e.g.
binary dir and documentation dir at the same time. Only prefixes that are required
by a certain component are added to that component - component must contain at
least one file/directory/symbolic link with CPACK_RPM_RELOCATION_PATHS prefix for a
certain relocation path to be added. Package will not contain any relocation paths
if there are no files/directories/symbolic links on any of the provided prefix
locations. Packages that either do not contain any relocation paths or contain
files/directories/symbolic links that are outside relocation paths print out an
AUTHOR_WARNING that RPM will be partially relocatable.
CPACK_RPM_<COMPONENT>_PACKAGE_PREFIX
Per component relocation path install prefix.
· Mandatory : NO
· Default : CPACK_PACKAGING_INSTALL_PREFIX
May be used to set per component CPACK_PACKAGING_INSTALL_PREFIX for relocatable RPM
packages.
CPACK_RPM_NO_INSTALL_PREFIX_RELOCATION
CPACK_RPM_NO_<COMPONENT>_INSTALL_PREFIX_RELOCATION
Removal of default install prefix from relocation paths list.
· Mandatory : NO
·
Default
CPACK_PACKAGING_INSTALL_PREFIX or CPACK_RPM_<COMPONENT>_PACKAGE_PREFIX are
treated as one of relocation paths
May be used to remove CPACK_PACKAGING_INSTALL_PREFIX and CPACK_RPM_<COMPO‐
NENT>_PACKAGE_PREFIX from relocatable RPM prefix paths.
CPACK_RPM_ADDITIONAL_MAN_DIRS
· Mandatory : NO
· Default : -
May be used to set additional man dirs that could potentially be compressed by
brp-compress RPM macro. Variable content must be a list of regular expressions that
point to directories containing man files or to man files directly. Note that in
order to compress man pages a path must also be present in brp-compress RPM script
and that brp-compress script must be added to RPM configuration by the operating
system.
Regular expressions that are added by default were taken from brp-compress RPM
macro:
· /usr/man/man.*
· /usr/man/.*/man.*
· /usr/info.*
· /usr/share/man/man.*
· /usr/share/man/.*/man.*
· /usr/share/info.*
· /usr/kerberos/man.*
· /usr/X11R6/man/man.*
· /usr/lib/perl5/man/man.*
· /usr/share/doc/.*/man/man.*
· /usr/lib/.*/man/man.*
CPACK_RPM_DEFAULT_USER
CPACK_RPM_<compName>_DEFAULT_USER
default user ownership of RPM content
· Mandatory : NO
· Default : root
Value should be user name and not UID. Note that <compName> must be in upper-case.
CPACK_RPM_DEFAULT_GROUP
CPACK_RPM_<compName>_DEFAULT_GROUP
default group ownership of RPM content
· Mandatory : NO
· Default : root
Value should be group name and not GID. Note that <compName> must be in
upper-case.
CPACK_RPM_DEFAULT_FILE_PERMISSIONS
CPACK_RPM_<compName>_DEFAULT_FILE_PERMISSIONS
default permissions used for packaged files
· Mandatory : NO
· Default : - (system default)
Accepted values are lists with PERMISSIONS. Valid permissions are:
· OWNER_READ
· OWNER_WRITE
· OWNER_EXECUTE
· GROUP_READ
· GROUP_WRITE
· GROUP_EXECUTE
· WORLD_READ
· WORLD_WRITE
· WORLD_EXECUTE
Note that <compName> must be in upper-case.
CPACK_RPM_DEFAULT_DIR_PERMISSIONS
CPACK_RPM_<compName>_DEFAULT_DIR_PERMISSIONS
default permissions used for packaged directories
· Mandatory : NO
· Default : - (system default)
Accepted values are lists with PERMISSIONS. Valid permissions are the same as for
CPACK_RPM_DEFAULT_FILE_PERMISSIONS. Note that <compName> must be in upper-case.
Packaging of Symbolic Links
CPackRPM supports packaging of symbolic links:
execute_process(COMMAND ${CMAKE_COMMAND}
-E create_symlink <relative_path_location> <symlink_name>)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/<symlink_name>
DESTINATION <symlink_location> COMPONENT libraries)
Symbolic links will be optimized (paths will be shortened if possible) before being added
to the package or if multiple relocation paths are detected, a post install symlink relo‐
cation script will be generated.
Symbolic links may point to locations that are not packaged by the same package (either a
different component or even not packaged at all) but those locations will be treated as if
they were a part of the package while determining if symlink should be either created or
present in a post install script - depending on relocation paths.
Symbolic links that point to locations outside packaging path produce a warning and are
treated as non relocatable permanent symbolic links.
Currently there are a few limitations though:
· For component based packaging component interdependency is not checked when processing
symbolic links. Symbolic links pointing to content of a different component are treated
the same way as if pointing to location that will not be packaged.
· Symbolic links pointing to a location through one or more intermediate symbolic links
will not be handled differently - if the intermediate symbolic link(s) is also on a
relocatable path, relocating it during package installation may cause initial symbolic
link to point to an invalid location.
Packaging of debug information
Debuginfo packages contain debug symbols and sources for debugging packaged binaries.
Debuginfo RPM packaging has it’s own set of variables:
CPACK_RPM_DEBUGINFO_PACKAGE
CPACK_RPM_<component>_DEBUGINFO_PACKAGE
Enable generation of debuginfo RPM package(s).
· Mandatory : NO
· Default : OFF
NOTE:
Binaries must contain debug symbols before packaging so use either Debug or RelWithDe‐
bInfo for CMAKE_BUILD_TYPE variable value.
NOTE:
Packages generated from packages without binary files, with binary files but without
execute permissions or without debug symbols will be empty.
CPACK_BUILD_SOURCE_DIRS
Provides locations of root directories of source files from which binaries were
built.
· Mandatory : YES if CPACK_RPM_DEBUGINFO_PACKAGE is set
· Default : -
NOTE:
For CMake project CPACK_BUILD_SOURCE_DIRS is set by default to point to
CMAKE_SOURCE_DIR and CMAKE_BINARY_DIR paths.
NOTE:
Sources with path prefixes that do not fall under any location provided with
CPACK_BUILD_SOURCE_DIRS will not be present in debuginfo package.
CPACK_RPM_BUILD_SOURCE_DIRS_PREFIX
CPACK_RPM_<component>_BUILD_SOURCE_DIRS_PREFIX
Prefix of location where sources will be placed during package installation.
· Mandatory : YES if CPACK_RPM_DEBUGINFO_PACKAGE is set
·
Default
“/usr/src/debug/<CPACK_PACKAGE_FILE_NAME>” and for component packaging
“/usr/src/debug/<CPACK_PACKAGE_FILE_NAME>-<component>”
NOTE:
Each source path prefix is additionaly suffixed by src_<index> where index is index of
the path used from CPACK_BUILD_SOURCE_DIRS variable. This produces
<CPACK_RPM_BUILD_SOURCE_DIRS_PREFIX>/src_<index> replacement path. Limitation is that
replaced path part must be shorter or of equal length than the length of its replace‐
ment. If that is not the case either CPACK_RPM_BUILD_SOURCE_DIRS_PREFIX variable has to
be set to a shorter path or source directories must be placed on a longer path.
CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS
Directories containing sources that should be excluded from debuginfo packages.
· Mandatory : NO
· Default : “/usr /usr/src /usr/src/debug”
Listed paths are owned by other RPM packages and should therefore not be deleted on
debuginfo package uninstallation.
CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS_ADDITION
Paths that should be appended to CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS for exclusion.
· Mandatory : NO
· Default : -
CPACK_RPM_DEBUGINFO_SINGLE_PACKAGE
Create a single debuginfo package even if components packaging is set.
· Mandatory : NO
· Default : OFF
When this variable is enabled it produces a single debuginfo package even if compo‐
nent packaging is enabled.
When using this feature in combination with components packaging and there is more
than one component this variable requires CPACK_RPM_MAIN_COMPONENT to be set.
NOTE:
If none of the CPACK_RPM_<component>_DEBUGINFO_PACKAGE variables is set then
CPACK_RPM_DEBUGINFO_PACKAGE is automatically set to ON when
CPACK_RPM_DEBUGINFO_SINGLE_PACKAGE is set.
CPACK_RPM_DEBUGINFO_FILE_NAME
CPACK_RPM_<component>_DEBUGINFO_FILE_NAME
Debuginfo package file name.
· Mandatory : NO
· Default : rpmbuild tool generated package file name
Alternatively provided debuginfo package file name must end with .rpm suffix and
should differ from file names of other generated packages.
Variable may contain @cpack_component@ placeholder which will be replaced by compo‐
nent name if component packaging is enabled otherwise it deletes the placeholder.
Setting the variable to RPM-DEFAULT may be used to explicitly set filename genera‐
tion to default.
NOTE:
CPACK_RPM_FILE_NAME also supports rpmbuild tool generated package file name - disabled
by default but can be enabled by setting the variable to RPM-DEFAULT.
Packaging of sources (SRPM)
SRPM packaging is enabled by setting CPACK_RPM_PACKAGE_SOURCES variable while usually
using CPACK_INSTALLED_DIRECTORIES variable to provide directory containing CMakeLists.txt
and source files.
For CMake projects SRPM package would be product by executing:
cpack -G RPM --config ./CPackSourceConfig.cmake
NOTE:
Produced SRPM package is expected to be built with cmake(1) executable and packaged
with cpack(1) executable so CMakeLists.txt has to be located in root source directory
and must be able to generate binary rpm packages by executing cpack -G command. The two
executables as well as rpmbuild must also be present when generating binary rpm pack‐
ages from the produced SRPM package.
Once the SRPM package is generated it can be used to generate binary packages by creating
a directory structure for rpm generation and executing rpmbuild tool:
mkdir -p build_dir/{BUILD,BUILDROOT,RPMS,SOURCES,SPECS,SRPMS} rpmbuild --define "_topdir
<path_to_build_dir>" --rebuild <SRPM_file_name>
Generated packages will be located in build_dir/RPMS directory or its sub directories.
NOTE:
SRPM package internally uses CPack/RPM generator to generate binary packages so CMake‐
Scripts.txt can decide during the SRPM to binary rpm generation step what content the
package(s) should have as well as how they should be packaged (monolithic or compo‐
nents). CMake can decide this for e.g. by reading environment variables set by the
package manager before starting the process of generating binary rpm packages. This way
a single SRPM package can be used to produce different binary rpm packages on different
platforms depending on the platform’s packaging rules.
Source RPM packaging has it’s own set of variables:
CPACK_RPM_PACKAGE_SOURCES
Should the content be packaged as a source rpm (default is binary rpm).
· Mandatory : NO
· Default : OFF
NOTE:
For cmake projects CPACK_RPM_PACKAGE_SOURCES variable is set to OFF in CPackCon‐
fig.cmake and ON in CPackSourceConfig.cmake generated files.
CPACK_RPM_SOURCE_PKG_BUILD_PARAMS
Additional command-line parameters provided to cmake(1) executable.
· Mandatory : NO
· Default : -
CPACK_RPM_SOURCE_PKG_PACKAGING_INSTALL_PREFIX
Packaging install prefix that would be provided in CPACK_PACKAGING_INSTALL_PREFIX
variable for producing binary RPM packages.
· Mandatory : YES
· Default : “/”
CPACK_RPM_BUILDREQUIRES
List of source rpm build dependencies.
· Mandatory : NO
· Default : -
May be used to set source RPM build dependencies (BuildRequires). Note that you
must enclose the complete build requirements string between quotes, for example:
set(CPACK_RPM_BUILDREQUIRES "python >= 2.5.0, cmake >= 2.8")
CPack
Build binary and source package installers.
Variables common to all CPack generators
The CPack module generates binary and source installers in a variety of formats using the
cpack program. Inclusion of the CPack module adds two new targets to the resulting make‐
files, package and package_source, which build the binary and source installers, respec‐
tively. The generated binary installers contain everything installed via CMake’s INSTALL
command (and the deprecated INSTALL_FILES, INSTALL_PROGRAMS, and INSTALL_TARGETS com‐
mands).
For certain kinds of binary installers (including the graphical installers on Mac OS X and
Windows), CPack generates installers that allow users to select individual application
components to install. See CPackComponent module for that.
The CPACK_GENERATOR variable has different meanings in different contexts. In your CMake‐
Lists.txt file, CPACK_GENERATOR is a list of generators: when run with no other arguments,
CPack will iterate over that list and produce one package for each generator. In a
CPACK_PROJECT_CONFIG_FILE, though, CPACK_GENERATOR is a string naming a single generator.
If you need per-cpack- generator logic to control other cpack settings, then you need a
CPACK_PROJECT_CONFIG_FILE.
The CMake source tree itself contains a CPACK_PROJECT_CONFIG_FILE. See the top level file
CMakeCPackOptions.cmake.in for an example.
If set, the CPACK_PROJECT_CONFIG_FILE is included automatically on a per-generator basis.
It only need contain overrides.
Here’s how it works:
· cpack runs
· it includes CPackConfig.cmake
· it iterates over the generators listed in that file’s CPACK_GENERATOR list variable
(unless told to use just a specific one via -G on the command line…)
· foreach generator, it then
· sets CPACK_GENERATOR to the one currently being iterated
· includes the CPACK_PROJECT_CONFIG_FILE
· produces the package for that generator
This is the key: For each generator listed in CPACK_GENERATOR in CPackConfig.cmake, cpack
will reset CPACK_GENERATOR internally to the one currently being used and then include the
CPACK_PROJECT_CONFIG_FILE.
Before including this CPack module in your CMakeLists.txt file, there are a variety of
variables that can be set to customize the resulting installers. The most commonly-used
variables are:
CPACK_PACKAGE_NAME
The name of the package (or application). If not specified, defaults to the project
name.
CPACK_PACKAGE_VENDOR
The name of the package vendor. (e.g., “Kitware”).
CPACK_PACKAGE_DIRECTORY
The directory in which CPack is doing its packaging. If it is not set then this
will default (internally) to the build dir. This variable may be defined in CPack
config file or from the cpack command line option “-B”. If set the command line
option override the value found in the config file.
CPACK_PACKAGE_VERSION_MAJOR
Package major Version
CPACK_PACKAGE_VERSION_MINOR
Package minor Version
CPACK_PACKAGE_VERSION_PATCH
Package patch Version
CPACK_PACKAGE_DESCRIPTION_FILE
A text file used to describe the project. Used, for example, the introduction
screen of a CPack-generated Windows installer to describe the project.
CPACK_PACKAGE_DESCRIPTION_SUMMARY
Short description of the project (only a few words). Default value is:
${PROJECT_DESCRIPTION}
if DESCRIPTION has given to the project() call or CMake generated string with
PROJECT_NAME otherwise.
CPACK_PACKAGE_FILE_NAME
The name of the package file to generate, not including the extension. For example,
cmake-2.6.1-Linux-i686. The default value is:
${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}-${CPACK_SYSTEM_NAME}.
CPACK_PACKAGE_INSTALL_DIRECTORY
Installation directory on the target system. This may be used by some CPack genera‐
tors like NSIS to create an installation directory e.g., “CMake 2.5” below the
installation prefix. All installed element will be put inside this directory.
CPACK_PACKAGE_ICON
A branding image that will be displayed inside the installer (used by GUI install‐
ers).
CPACK_PACKAGE_CHECKSUM
An algorithm that will be used to generate additional file with checksum of the
package. Output file name will be:
${CPACK_PACKAGE_FILE_NAME}.${CPACK_PACKAGE_CHECKSUM}
Supported algorithms are those listed by the string(<HASH>) command.
CPACK_PROJECT_CONFIG_FILE
CPack-time project CPack configuration file. This file included at cpack time, once
per generator after CPack has set CPACK_GENERATOR to the actual generator being
used. It allows per-generator setting of CPACK_* variables at cpack time.
CPACK_RESOURCE_FILE_LICENSE
License to be embedded in the installer. It will typically be displayed to the user
by the produced installer (often with an explicit “Accept” button, for graphical
installers) prior to installation. This license file is NOT added to installed file
but is used by some CPack generators like NSIS. If you want to install a license
file (may be the same as this one) along with your project you must add an appro‐
priate CMake INSTALL command in your CMakeLists.txt.
CPACK_RESOURCE_FILE_README
ReadMe file to be embedded in the installer. It typically describes in some detail
the purpose of the project during the installation. Not all CPack generators uses
this file.
CPACK_RESOURCE_FILE_WELCOME
Welcome file to be embedded in the installer. It welcomes users to this installer.
Typically used in the graphical installers on Windows and Mac OS X.
CPACK_MONOLITHIC_INSTALL
Disables the component-based installation mechanism. When set the component speci‐
fication is ignored and all installed items are put in a single “MONOLITHIC” pack‐
age. Some CPack generators do monolithic packaging by default and may be asked to
do component packaging by setting CPACK_<GENNAME>_COMPONENT_INSTALL to 1/TRUE.
CPACK_GENERATOR
List of CPack generators to use. If not specified, CPack will create a set of
options CPACK_BINARY_<GENNAME> (e.g., CPACK_BINARY_NSIS) allowing the user to
enable/disable individual generators. This variable may be used on the command line
as well as in:
cpack -D CPACK_GENERATOR="ZIP;TGZ" /path/to/build/tree
CPACK_OUTPUT_CONFIG_FILE
The name of the CPack binary configuration file. This file is the CPack configura‐
tion generated by the CPack module for binary installers. Defaults to CPackCon‐
fig.cmake.
CPACK_PACKAGE_EXECUTABLES
Lists each of the executables and associated text label to be used to create Start
Menu shortcuts. For example, setting this to the list ccmake;CMake will create a
shortcut named “CMake” that will execute the installed executable ccmake. Not all
CPack generators use it (at least NSIS, WIX and OSXX11 do).
CPACK_STRIP_FILES
List of files to be stripped. Starting with CMake 2.6.0 CPACK_STRIP_FILES will be a
boolean variable which enables stripping of all files (a list of files evaluates to
TRUE in CMake, so this change is compatible).
CPACK_VERBATIM_VARIABLES
If set to TRUE, values of variables prefixed with CPACK will be escaped before
being written to the configuration files, so that the cpack program receives them
exactly as they were specified. If not, characters like quotes and backslashes can
cause parsing errors or alter the value received by the cpack program. Defaults to
FALSE for backwards compatibility.
· Mandatory : NO
· Default : FALSE
The following CPack variables are specific to source packages, and will not affect binary
packages:
CPACK_SOURCE_PACKAGE_FILE_NAME
The name of the source package. For example cmake-2.6.1.
CPACK_SOURCE_STRIP_FILES
List of files in the source tree that will be stripped. Starting with CMake 2.6.0
CPACK_SOURCE_STRIP_FILES will be a boolean variable which enables stripping of all
files (a list of files evaluates to TRUE in CMake, so this change is compatible).
CPACK_SOURCE_GENERATOR
List of generators used for the source packages. As with CPACK_GENERATOR, if this
is not specified then CPack will create a set of options (e.g., CPACK_SOURCE_ZIP)
allowing users to select which packages will be generated.
CPACK_SOURCE_OUTPUT_CONFIG_FILE
The name of the CPack source configuration file. This file is the CPack configura‐
tion generated by the CPack module for source installers. Defaults to CPackSource‐
Config.cmake.
CPACK_SOURCE_IGNORE_FILES
Pattern of files in the source tree that won’t be packaged when building a source
package. This is a list of regular expression patterns (that must be properly
escaped), e.g., /CVS/;/.svn/;.swp$;.#;/#;.*~;cscope.*
The following variables are for advanced uses of CPack:
CPACK_CMAKE_GENERATOR
What CMake generator should be used if the project is CMake project. Defaults to
the value of CMAKE_GENERATOR few users will want to change this setting.
CPACK_INSTALL_CMAKE_PROJECTS
List of four values that specify what project to install. The four values are:
Build directory, Project Name, Project Component, Directory. If omitted, CPack will
build an installer that installs everything.
CPACK_SYSTEM_NAME
System name, defaults to the value of ${CMAKE_SYSTEM_NAME}.
CPACK_PACKAGE_VERSION
Package full version, used internally. By default, this is built from CPACK_PACK‐
AGE_VERSION_MAJOR, CPACK_PACKAGE_VERSION_MINOR, and CPACK_PACKAGE_VERSION_PATCH.
CPACK_TOPLEVEL_TAG
Directory for the installed files.
CPACK_INSTALL_COMMANDS
Extra commands to install components.
CPACK_INSTALLED_DIRECTORIES
Extra directories to install.
CPACK_PACKAGE_INSTALL_REGISTRY_KEY
Registry key used when installing this project. This is only used by installer for
Windows. The default value is based on the installation directory.
CPACK_CREATE_DESKTOP_LINKS
List of desktop links to create. Each desktop link requires a corresponding start
menu shortcut as created by CPACK_PACKAGE_EXECUTABLES.
CPACK_BINARY_<GENNAME>
CPack generated options for binary generators. The CPack.cmake module generates
(when CPACK_GENERATOR is not set) a set of CMake options (see CMake option command)
which may then be used to select the CPack generator(s) to be used when launching
the package target.
Provide options to choose generators we might check here if the required tools for
the generates exist and set the defaults according to the results
CPackWIX
CPack WiX generator specific options
Variables specific to CPack WiX generator
The following variables are specific to the installers built on Windows using WiX.
CPACK_WIX_UPGRADE_GUID
Upgrade GUID (Product/@UpgradeCode)
Will be automatically generated unless explicitly provided.
It should be explicitly set to a constant generated globally unique identifier
(GUID) to allow your installers to replace existing installations that use the same
GUID.
You may for example explicitly set this variable in your CMakeLists.txt to the
value that has been generated per default. You should not use GUIDs that you did
not generate yourself or which may belong to other projects.
A GUID shall have the following fixed length syntax:
XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
(each X represents an uppercase hexadecimal digit)
CPACK_WIX_PRODUCT_GUID
Product GUID (Product/@Id)
Will be automatically generated unless explicitly provided.
If explicitly provided this will set the Product Id of your installer.
The installer will abort if it detects a pre-existing installation that uses the
same GUID.
The GUID shall use the syntax described for CPACK_WIX_UPGRADE_GUID.
CPACK_WIX_LICENSE_RTF
RTF License File
If CPACK_RESOURCE_FILE_LICENSE has an .rtf extension it is used as-is.
If CPACK_RESOURCE_FILE_LICENSE has an .txt extension it is implicitly converted to
RTF by the WiX Generator. The expected encoding of the .txt file is UTF-8.
With CPACK_WIX_LICENSE_RTF you can override the license file used by the WiX Gener‐
ator in case CPACK_RESOURCE_FILE_LICENSE is in an unsupported format or the .txt ->
.rtf conversion does not work as expected.
CPACK_WIX_PRODUCT_ICON
The Icon shown next to the program name in Add/Remove programs.
If set, this icon is used in place of the default icon.
CPACK_WIX_UI_REF
This variable allows you to override the Id of the <UIRef> element in the WiX tem‐
plate.
The default is WixUI_InstallDir in case no CPack components have been defined and
WixUI_FeatureTree otherwise.
CPACK_WIX_UI_BANNER
The bitmap will appear at the top of all installer pages other than the welcome and
completion dialogs.
If set, this image will replace the default banner image.
This image must be 493 by 58 pixels.
CPACK_WIX_UI_DIALOG
Background bitmap used on the welcome and completion dialogs.
If this variable is set, the installer will replace the default dialog image.
This image must be 493 by 312 pixels.
CPACK_WIX_PROGRAM_MENU_FOLDER
Start menu folder name for launcher.
If this variable is not set, it will be initialized with CPACK_PACKAGE_NAME
CPACK_WIX_CULTURES
Language(s) of the installer
Languages are compiled into the WixUI extension library. To use them, simply pro‐
vide the name of the culture. If you specify more than one culture identifier in a
comma or semicolon delimited list, the first one that is found will be used. You
can find a list of supported languages at:
http://wix.sourceforge.net/manual-wix3/WixUI_localization.htm
CPACK_WIX_TEMPLATE
Template file for WiX generation
If this variable is set, the specified template will be used to generate the WiX
wxs file. This should be used if further customization of the output is required.
If this variable is not set, the default MSI template included with CMake will be
used.
CPACK_WIX_PATCH_FILE
Optional list of XML files with fragments to be inserted into generated WiX sources
This optional variable can be used to specify an XML file that the WiX generator
will use to inject fragments into its generated source files.
Patch files understood by the CPack WiX generator roughly follow this RELAX NG com‐
pact schema:
start = CPackWiXPatch
CPackWiXPatch = element CPackWiXPatch { CPackWiXFragment* }
CPackWiXFragment = element CPackWiXFragment
{
attribute Id { string },
fragmentContent*
}
fragmentContent = element * - CPackWiXFragment
{
(attribute * { text } | text | fragmentContent)*
}
Currently fragments can be injected into most Component, File, Directory and Fea‐
ture elements.
The following additional special Ids can be used:
· #PRODUCT for the <Product> element.
· #PRODUCTFEATURE for the root <Feature> element.
The following example illustrates how this works.
Given that the WiX generator creates the following XML element:
<Component Id="CM_CP_applications.bin.my_libapp.exe" Guid="*"/>
The following XML patch file may be used to inject an Environment element into it:
<CPackWiXPatch>
<CPackWiXFragment Id="CM_CP_applications.bin.my_libapp.exe">
<Environment Id="MyEnvironment" Action="set"
Name="MyVariableName" Value="MyVariableValue"/>
</CPackWiXFragment>
</CPackWiXPatch>
CPACK_WIX_EXTRA_SOURCES
Extra WiX source files
This variable provides an optional list of extra WiX source files (.wxs) that
should be compiled and linked. The full path to source files is required.
CPACK_WIX_EXTRA_OBJECTS
Extra WiX object files or libraries
This variable provides an optional list of extra WiX object (.wixobj) and/or WiX
library (.wixlib) files. The full path to objects and libraries is required.
CPACK_WIX_EXTENSIONS
This variable provides a list of additional extensions for the WiX tools light and
candle.
CPACK_WIX_<TOOL>_EXTENSIONS
This is the tool specific version of CPACK_WIX_EXTENSIONS. <TOOL> can be either
LIGHT or CANDLE.
CPACK_WIX_<TOOL>_EXTRA_FLAGS
This list variable allows you to pass additional flags to the WiX tool <TOOL>.
Use it at your own risk. Future versions of CPack may generate flags which may be
in conflict with your own flags.
<TOOL> can be either LIGHT or CANDLE.
CPACK_WIX_CMAKE_PACKAGE_REGISTRY
If this variable is set the generated installer will create an entry in the windows
registry key HKEY_LOCAL_MACHINE\Software\Kitware\CMake\Packages\<package> The value
for <package> is provided by this variable.
Assuming you also install a CMake configuration file this will allow other CMake
projects to find your package with the find_package() command.
CPACK_WIX_PROPERTY_<PROPERTY>
This variable can be used to provide a value for the Windows Installer property
<PROPERTY>
The following list contains some example properties that can be used to customize
information under “Programs and Features” (also known as “Add or Remove Programs”)
· ARPCOMMENTS - Comments
· ARPHELPLINK - Help and support information URL
· ARPURLINFOABOUT - General information URL
· ARPURLUPDATEINFO - Update information URL
· ARPHELPTELEPHONE - Help and support telephone number
· ARPSIZE - Size (in kilobytes) of the application
CPACK_WIX_ROOT_FEATURE_TITLE
Sets the name of the root install feature in the WIX installer. Same as CPACK_COM‐
PONENT_<compName>_DISPLAY_NAME for components.
CPACK_WIX_ROOT_FEATURE_DESCRIPTION
Sets the description of the root install feature in the WIX installer. Same as
CPACK_COMPONENT_<compName>_DESCRIPTION for components.
CPACK_WIX_SKIP_PROGRAM_FOLDER
If this variable is set to true, the default install location of the generated
package will be CPACK_PACKAGE_INSTALL_DIRECTORY directly. The install location
will not be located relatively below ProgramFiles or ProgramFiles64.
NOTE:
Installers created with this feature do not take differences between the
system on which the installer is created and the system on which the in‐
staller might be used into account.
It is therefor possible that the installer e.g. might try to install onto a
drive that is unavailable or unintended or a path that does not follow the
localization or convention of the system on which the installation is per‐
formed.
CPACK_WIX_ROOT_FOLDER_ID
This variable allows specification of a custom root folder ID. The generator spe‐
cific <64> token can be used for folder IDs that come in 32-bit and 64-bit vari‐
ants. In 32-bit builds the token will expand empty while in 64-bit builds it will
expand to 64.
When unset generated installers will default installing to ProgramFiles<64>Folder.
CPACK_WIX_ROOT
This variable can optionally be set to the root directory of a custom WiX Toolset
installation.
When unspecified CPack will try to locate a WiX Toolset installation via the WIX
environment variable instead.
CSharpUtilities
Functions to make configuration of CSharp/.NET targets easier.
A collection of CMake utility functions useful for dealing with CSharp targets for Visual
Studio generators from version 2010 and later.
The following functions are provided by this module:
Main functions
· csharp_set_windows_forms_properties()
· csharp_set_designer_cs_properties()
· csharp_set_xaml_cs_properties()
Helper functions
· csharp_get_filename_keys()
· csharp_get_filename_key_base()
· csharp_get_dependentupon_name()
Main functions provided by the module
csharp_set_windows_forms_properties
Sets source file properties for use of Windows Forms. Use this, if your CSharp tar‐
get uses Windows Forms:
csharp_set_windows_forms_properties([<file1> [<file2> [...]]])
<fileN>
List of all source files which are relevant for setting the VS_CSHARP_<tag‐
name> properties (including .cs, .resx and .Designer.cs extensions).
In the list of all given files for all files ending with .Designer.cs and .resx is
searched. For every designer or resource file a file with the same base name but
only .cs as extension is searched. If this is found, the VS_CSHARP_<tagname> prop‐
erties are set as follows:
for the .cs file:
· VS_CSHARP_SubType “Form”
for the .Designer.cs file (if it exists):
· VS_CSHARP_DependentUpon <cs-filename>
· VS_CSHARP_DesignTime “” (delete tag if previously defined)
· VS_CSHARP_AutoGen “”(delete tag if previously defined)
for the .resx file (if it exists):
· VS_RESOURCE_GENERATOR “” (delete tag if previously defined)
· VS_CSHARP_DependentUpon <cs-filename>
· VS_CSHARP_SubType “Designer”
csharp_set_designer_cs_properties
Sets source file properties of .Designer.cs files depending on sibling filenames.
Use this, if your CSharp target does not use Windows Forms (for Windows Forms use
csharp_set_designer_cs_properties() instead):
csharp_set_designer_cs_properties([<file1> [<file2> [...]]])
<fileN>
List of all source files which are relevant for setting the VS_CSHARP_<tag‐
name> properties (including .cs, .resx, .settings and .Designer.cs exten‐
sions).
In the list of all given files for all files ending with .Designer.cs is searched.
For every designer file all files with the same base name but different extensions
are searched. If a match is found, the source file properties of the designer file
are set depending on the extension of the matched file:
if match is .resx file:
· VS_CSHARP_AutoGen “True”
· VS_CSHARP_DesignTime “True”
· VS_CSHARP_DependentUpon <resx-filename>
if match is .cs file:
· VS_CSHARP_DependentUpon <cs-filename>
if match is .settings file:
· VS_CSHARP_AutoGen “True”
· VS_CSHARP_DesignTimeSharedInput “True”
· VS_CSHARP_DependentUpon <settings-filename>
NOTE:
Because the source file properties of the .Designer.cs file are set according to the
found matches and every match sets the VS_CSHARP_DependentUpon property, there should
only be one match for each Designer.cs file.
csharp_set_xaml_cs_properties
Sets source file properties for use of Windows Presentation Foundation (WPF) and
XAML. Use this, if your CSharp target uses WPF/XAML:
csharp_set_xaml_cs_properties([<file1> [<file2> [...]]])
<fileN>
List of all source files which are relevant for setting the VS_CSHARP_<tag‐
name> properties (including .cs, .xaml, and .xaml.cs extensions).
In the list of all given files for all files ending with .xaml.cs is searched. For
every xaml-cs file, a file with the same base name but extension .xaml is searched.
If a match is found, the source file properties of the .xaml.cs file are set:
· VS_CSHARP_DependentUpon <xaml-filename>
Helper functions which are used by the above ones
csharp_get_filename_keys
Helper function which computes a list of key values to identify source files inde‐
pendently of relative/absolute paths given in cmake and eliminates case sensitiv‐
ity:
csharp_get_filename_keys(OUT [<file1> [<file2> [...]]])
OUT Name of the variable in which the list of keys is stored
<fileN>
filename(s) as given to to CSharp target using add_library() or add_exe‐
cutable()
In some way the function applies a canonicalization to the source names. This is
necessary to find file matches if the files have been added to the target with dif‐
ferent directory prefixes:
add_library(lib
myfile.cs
${CMAKE_CURRENT_SOURCE_DIR}/myfile.Designer.cs)
set_source_files_properties(myfile.Designer.cs PROPERTIES
VS_CSHARP_DependentUpon myfile.cs)
# this will fail, because in cmake
# - ${CMAKE_CURRENT_SOURCE_DIR}/myfile.Designer.cs
# - myfile.Designer.cs
# are not the same source file. The source file property is not set.
csharp_get_filename_key_base
Returns the full filepath and name without extension of a key. KEY is expected to
be a key from csharp_get_filename_keys. In BASE the value of KEY without the file
extension is returned:
csharp_get_filename_key_base(BASE KEY)
BASE Name of the variable with the computed “base” of KEY.
KEY The key of which the base will be computed. Expected to be a upper case full
filename.
csharp_get_dependentupon_name
Computes a string which can be used as value for the source file property
VS_CSHARP_<tagname> with target being DependentUpon:
csharp_get_dependentupon_name(NAME FILE)
NAME Name of the variable with the result value
FILE Filename to convert to <DependentUpon> value
Actually this is only the filename without any path given at the moment.
CTest
Configure a project for testing with CTest/CDash
Include this module in the top CMakeLists.txt file of a project to enable testing with
CTest and dashboard submissions to CDash:
project(MyProject)
...
include(CTest)
The module automatically creates a BUILD_TESTING option that selects whether to enable
testing support (ON by default). After including the module, use code like:
if(BUILD_TESTING)
# ... CMake code to create tests ...
endif()
to creating tests when testing is enabled.
To enable submissions to a CDash server, create a CTestConfig.cmake file at the top of the
project with content such as:
set(CTEST_PROJECT_NAME "MyProject")
set(CTEST_NIGHTLY_START_TIME "01:00:00 UTC")
set(CTEST_DROP_METHOD "http")
set(CTEST_DROP_SITE "my.cdash.org")
set(CTEST_DROP_LOCATION "/submit.php?project=MyProject")
set(CTEST_DROP_SITE_CDASH TRUE)
(the CDash server can provide the file to a project administrator who configures MyPro‐
ject). Settings in the config file are shared by both this CTest module and the ctest(1)
command-line Dashboard Client mode (ctest -S).
While building a project for submission to CDash, CTest scans the build output for errors
and warnings and reports them with surrounding context from the build log. This generic
approach works for all build tools, but does not give details about the command invocation
that produced a given problem. One may get more detailed reports by setting the
CTEST_USE_LAUNCHERS variable:
set(CTEST_USE_LAUNCHERS 1)
in the CTestConfig.cmake file.
CTestCoverageCollectGCOV
This module provides the ctest_coverage_collect_gcov function.
This function runs gcov on all .gcda files found in the binary tree and packages the
resulting .gcov files into a tar file. This tarball also contains the following:
· data.json defines the source and build directories for use by CDash.
· Labels.json indicates any LABELS that have been set on the source files.
· The uncovered directory holds any uncovered files found by CTEST_EXTRA_COVERAGE_GLOB.
After generating this tar file, it can be sent to CDash for display with the ctest_sub‐
mit(CDASH_UPLOAD) command.
cdash_coverage_collect_gcov
ctest_coverage_collect_gcov(TARBALL <tarfile>
[SOURCE <source_dir>][BUILD <build_dir>]
[GCOV_COMMAND <gcov_command>]
[GCOV_OPTIONS <options>...]
)
Run gcov and package a tar file for CDash. The options are:
TARBALL <tarfile>
Specify the location of the .tar file to be created for later upload to
CDash. Relative paths will be interpreted with respect to the top-level
build directory.
SOURCE <source_dir>
Specify the top-level source directory for the build. Default is the value
of CTEST_SOURCE_DIRECTORY.
BUILD <build_dir>
Specify the top-level build directory for the build. Default is the value
of CTEST_BINARY_DIRECTORY.
GCOV_COMMAND <gcov_command>
Specify the full path to the gcov command on the machine. Default is the
value of CTEST_COVERAGE_COMMAND.
GCOV_OPTIONS <options>...
Specify options to be passed to gcov. The gcov command is run as gcov
<options>... -o <gcov-dir> <file>.gcda. If not specified, the default
option is just -b.
GLOB Recursively search for .gcda files in build_dir rather than determining
search locations by reading TargetDirectories.txt.
DELETE Delete coverage files after they’ve been packaged into the .tar.
QUIET Suppress non-error messages that otherwise would have been printed out by
this function.
CTestScriptMode
This file is read by ctest in script mode (-S)
CTestUseLaunchers
Set the RULE_LAUNCH_* global properties when CTEST_USE_LAUNCHERS is on.
CTestUseLaunchers is automatically included when you include(CTest). However, it is split
out into its own module file so projects can use the CTEST_USE_LAUNCHERS functionality
independently.
To use launchers, set CTEST_USE_LAUNCHERS to ON in a ctest -S dashboard script, and then
also set it in the cache of the configured project. Both cmake and ctest need to know the
value of it for the launchers to work properly. CMake needs to know in order to generate
proper build rules, and ctest, in order to produce the proper error and warning analysis.
For convenience, you may set the ENV variable CTEST_USE_LAUNCHERS_DEFAULT in your ctest -S
script, too. Then, as long as your CMakeLists uses include(CTest) or include(CTestUse‐
Launchers), it will use the value of the ENV variable to initialize a CTEST_USE_LAUNCHERS
cache variable. This cache variable initialization only occurs if CTEST_USE_LAUNCHERS is
not already defined. If CTEST_USE_LAUNCHERS is on in a ctest -S script the ctest_configure
command will add -DCTEST_USE_LAUNCHERS:BOOL=TRUE to the cmake command used to configure
the project.
Dart
Configure a project for testing with CTest or old Dart Tcl Client
This file is the backwards-compatibility version of the CTest module. It supports using
the old Dart 1 Tcl client for driving dashboard submissions as well as testing with CTest.
This module should be included in the CMakeLists.txt file at the top of a project. Typi‐
cal usage:
include(Dart)
if(BUILD_TESTING)
# ... testing related CMake code ...
endif()
The BUILD_TESTING option is created by the Dart module to determine whether testing sup‐
port should be enabled. The default is ON.
DeployQt4
Functions to help assemble a standalone Qt4 executable.
A collection of CMake utility functions useful for deploying Qt4 executables.
The following functions are provided by this module:
write_qt4_conf
resolve_qt4_paths
fixup_qt4_executable
install_qt4_plugin_path
install_qt4_plugin
install_qt4_executable
Requires CMake 2.6 or greater because it uses function and PARENT_SCOPE. Also depends on
BundleUtilities.cmake.
WRITE_QT4_CONF(<qt_conf_dir> <qt_conf_contents>)
Writes a qt.conf file with the <qt_conf_contents> into <qt_conf_dir>.
RESOLVE_QT4_PATHS(<paths_var> [<executable_path>])
Loop through <paths_var> list and if any don’t exist resolve them relative to the <exe‐
cutable_path> (if supplied) or the CMAKE_INSTALL_PREFIX.
FIXUP_QT4_EXECUTABLE(<executable>
[<qtplugins> <libs> <dirs> <plugins_dir> <request_qt_conf>])
Copies Qt plugins, writes a Qt configuration file (if needed) and fixes up a Qt4 exe‐
cutable using BundleUtilities so it is standalone and can be drag-and-drop copied to
another machine as long as all of the system libraries are compatible.
<executable> should point to the executable to be fixed-up.
<qtplugins> should contain a list of the names or paths of any Qt plugins to be installed.
<libs> will be passed to BundleUtilities and should be a list of any already installed
plugins, libraries or executables to also be fixed-up.
<dirs> will be passed to BundleUtilities and should contain and directories to be searched
to find library dependencies.
<plugins_dir> allows an custom plugins directory to be used.
<request_qt_conf> will force a qt.conf file to be written even if not needed.
INSTALL_QT4_PLUGIN_PATH(plugin executable copy installed_plugin_path_var
<plugins_dir> <component> <configurations>)
Install (or copy) a resolved <plugin> to the default plugins directory (or <plugins_dir>)
relative to <executable> and store the result in <installed_plugin_path_var>.
If <copy> is set to TRUE then the plugins will be copied rather than installed. This is
to allow this module to be used at CMake time rather than install time.
If <component> is set then anything installed will use this COMPONENT.
INSTALL_QT4_PLUGIN(plugin executable copy installed_plugin_path_var
<plugins_dir> <component>)
Install (or copy) an unresolved <plugin> to the default plugins directory (or <plug‐
ins_dir>) relative to <executable> and store the result in <installed_plugin_path_var>.
See documentation of INSTALL_QT4_PLUGIN_PATH.
INSTALL_QT4_EXECUTABLE(<executable>
[<qtplugins> <libs> <dirs> <plugins_dir> <request_qt_conf> <component>])
Installs Qt plugins, writes a Qt configuration file (if needed) and fixes up a Qt4 exe‐
cutable using BundleUtilities so it is standalone and can be drag-and-drop copied to
another machine as long as all of the system libraries are compatible. The executable
will be fixed-up at install time. <component> is the COMPONENT used for bundle fixup and
plugin installation. See documentation of FIXUP_QT4_BUNDLE.
Documentation
DocumentationVTK.cmake
This file provides support for the VTK documentation framework. It relies on several
tools (Doxygen, Perl, etc).
ExternalData
Manage data files stored outside source tree
Introduction
Use this module to unambiguously reference data files stored outside the source tree and
fetch them at build time from arbitrary local and remote content-addressed locations.
Functions provided by this module recognize arguments with the syntax DATA{<name>} as ref‐
erences to external data, replace them with full paths to local copies of those data, and
create build rules to fetch and update the local copies.
For example:
include(ExternalData)
set(ExternalData_URL_TEMPLATES "file:///local/%(algo)/%(hash)"
"file:////host/share/%(algo)/%(hash)"
"http://data.org/%(algo)/%(hash)")
ExternalData_Add_Test(MyData
NAME MyTest
COMMAND MyExe DATA{MyInput.png}
)
ExternalData_Add_Target(MyData)
When test MyTest runs the DATA{MyInput.png} argument will be replaced by the full path to
a real instance of the data file MyInput.png on disk. If the source tree contains a con‐
tent link such as MyInput.png.md5 then the MyData target creates a real MyInput.png in the
build tree.
Module Functions
ExternalData_Expand_Arguments
The ExternalData_Expand_Arguments function evaluates DATA{} references in its argu‐
ments and constructs a new list of arguments:
ExternalData_Expand_Arguments(
<target> # Name of data management target
<outVar> # Output variable
[args...] # Input arguments, DATA{} allowed
)
It replaces each DATA{} reference in an argument with the full path of a real data
file on disk that will exist after the <target> builds.
ExternalData_Add_Test
The ExternalData_Add_Test function wraps around the CMake add_test() command but
supports DATA{} references in its arguments:
ExternalData_Add_Test(
<target> # Name of data management target
... # Arguments of add_test(), DATA{} allowed
)
It passes its arguments through ExternalData_Expand_Arguments and then invokes the
add_test() command using the results.
ExternalData_Add_Target
The ExternalData_Add_Target function creates a custom target to manage local
instances of data files stored externally:
ExternalData_Add_Target(
<target> # Name of data management target
)
It creates custom commands in the target as necessary to make data files available
for each DATA{} reference previously evaluated by other functions provided by this
module. Data files may be fetched from one of the URL templates specified in the
ExternalData_URL_TEMPLATES variable, or may be found locally in one of the paths
specified in the ExternalData_OBJECT_STORES variable.
Typically only one target is needed to manage all external data within a project.
Call this function once at the end of configuration after all data references have
been processed.
Module Variables
The following variables configure behavior. They should be set before calling any of the
functions provided by this module.
ExternalData_BINARY_ROOT
The ExternalData_BINARY_ROOT variable may be set to the directory to hold the real
data files named by expanded DATA{} references. The default is CMAKE_BINARY_DIR.
The directory layout will mirror that of content links under External‐
Data_SOURCE_ROOT.
ExternalData_CUSTOM_SCRIPT_<key>
Specify a full path to a .cmake custom fetch script identified by <key> in entries
of the ExternalData_URL_TEMPLATES list. See Custom Fetch Scripts.
ExternalData_LINK_CONTENT
The ExternalData_LINK_CONTENT variable may be set to the name of a supported hash
algorithm to enable automatic conversion of real data files referenced by the
DATA{} syntax into content links. For each such <file> a content link named
<file><ext> is created. The original file is renamed to the form .External‐
Data_<algo>_<hash> to stage it for future transmission to one of the locations in
the list of URL templates (by means outside the scope of this module). The data
fetch rule created for the content link will use the staged object if it cannot be
found using any URL template.
ExternalData_NO_SYMLINKS
The real data files named by expanded DATA{} references may be made available under
ExternalData_BINARY_ROOT using symbolic links on some platforms. The External‐
Data_NO_SYMLINKS variable may be set to disable use of symbolic links and enable
use of copies instead.
ExternalData_OBJECT_STORES
The ExternalData_OBJECT_STORES variable may be set to a list of local directories
that store objects using the layout <dir>/%(algo)/%(hash). These directories will
be searched first for a needed object. If the object is not available in any store
then it will be fetched remotely using the URL templates and added to the first
local store listed. If no stores are specified the default is a location inside
the build tree.
ExternalData_SERIES_PARSE
ExternalData_SERIES_PARSE_PREFIX
ExternalData_SERIES_PARSE_NUMBER
ExternalData_SERIES_PARSE_SUFFIX
ExternalData_SERIES_MATCH
See Referencing File Series.
ExternalData_SOURCE_ROOT
The ExternalData_SOURCE_ROOT variable may be set to the highest source directory
containing any path named by a DATA{} reference. The default is CMAKE_SOURCE_DIR.
ExternalData_SOURCE_ROOT and CMAKE_SOURCE_DIR must refer to directories within a
single source distribution (e.g. they come together in one tarball).
ExternalData_TIMEOUT_ABSOLUTE
The ExternalData_TIMEOUT_ABSOLUTE variable sets the download absolute timeout, in
seconds, with a default of 300 seconds. Set to 0 to disable enforcement.
ExternalData_TIMEOUT_INACTIVITY
The ExternalData_TIMEOUT_INACTIVITY variable sets the download inactivity timeout,
in seconds, with a default of 60 seconds. Set to 0 to disable enforcement.
ExternalData_URL_ALGO_<algo>_<key>
Specify a custom URL component to be substituted for URL template placeholders of
the form %(algo:<key>), where <key> is a valid C identifier, when fetching an
object referenced via hash algorithm <algo>. If not defined, the default URL com‐
ponent is just <algo> for any <key>.
ExternalData_URL_TEMPLATES
The ExternalData_URL_TEMPLATES may be set to provide a list of of URL templates
using the placeholders %(algo) and %(hash) in each template. Data fetch rules try
each URL template in order by substituting the hash algorithm name for %(algo) and
the hash value for %(hash). Alternatively one may use %(algo:<key>) with External‐
Data_URL_ALGO_<algo>_<key> variables to gain more flexibility in remote URLs.
Referencing Files
Referencing Single Files
The DATA{} syntax is literal and the <name> is a full or relative path within the source
tree. The source tree must contain either a real data file at <name> or a “content link”
at <name><ext> containing a hash of the real file using a hash algorithm corresponding to
<ext>. For example, the argument DATA{img.png} may be satisfied by either a real img.png
file in the current source directory or a img.png.md5 file containing its MD5 sum.
Multiple content links of the same name with different hash algorithms are supported (e.g.
img.png.sha256 and img.png.sha1) so long as they all correspond to the same real file.
This allows objects to be fetched from sources indexed by different hash algorithms.
Referencing File Series
The DATA{} syntax can be told to fetch a file series using the form DATA{<name>,:}, where
the : is literal. If the source tree contains a group of files or content links named
like a series then a reference to one member adds rules to fetch all of them. Although
all members of a series are fetched, only the file originally named by the DATA{} argument
is substituted for it. The default configuration recognizes file series names ending with
#.ext, _#.ext, .#.ext, or -#.ext where # is a sequence of decimal digits and .ext is any
single extension. Configure it with a regex that parses <number> and <suffix> parts from
the end of <name>:
ExternalData_SERIES_PARSE = regex of the form (<number>)(<suffix>)$
For more complicated cases set:
ExternalData_SERIES_PARSE = regex with at least two () groups
ExternalData_SERIES_PARSE_PREFIX = <prefix> regex group number, if any
ExternalData_SERIES_PARSE_NUMBER = <number> regex group number
ExternalData_SERIES_PARSE_SUFFIX = <suffix> regex group number
Configure series number matching with a regex that matches the <number> part of series
members named <prefix><number><suffix>:
ExternalData_SERIES_MATCH = regex matching <number> in all series members
Note that the <suffix> of a series does not include a hash-algorithm extension.
Referencing Associated Files
The DATA{} syntax can alternatively match files associated with the named file and con‐
tained in the same directory. Associated files may be specified by options using the syn‐
tax DATA{<name>,<opt1>,<opt2>,...}. Each option may specify one file by name or specify a
regular expression to match file names using the syntax REGEX:<regex>. For example, the
arguments:
DATA{MyData/MyInput.mhd,MyInput.img} # File pair
DATA{MyData/MyFrames00.png,REGEX:MyFrames[0-9]+\\.png} # Series
will pass MyInput.mha and MyFrames00.png on the command line but ensure that the associ‐
ated files are present next to them.
Referencing Directories
The DATA{} syntax may reference a directory using a trailing slash and a list of associ‐
ated files. The form DATA{<name>/,<opt1>,<opt2>,...} adds rules to fetch any files in the
directory that match one of the associated file options. For example, the argument
DATA{MyDataDir/,REGEX:.*} will pass the full path to a MyDataDir directory on the command
line and ensure that the directory contains files corresponding to every file or content
link in the MyDataDir source directory. In order to match associated files in subdirecto‐
ries, specify a RECURSE: option, e.g. DATA{MyDataDir/,RECURSE:,REGEX:.*}.
Hash Algorithms
The following hash algorithms are supported:
%(algo) <ext> Description
------- ----- -----------
MD5 .md5 Message-Digest Algorithm 5, RFC 1321
SHA1 .sha1 US Secure Hash Algorithm 1, RFC 3174
SHA224 .sha224 US Secure Hash Algorithms, RFC 4634
SHA256 .sha256 US Secure Hash Algorithms, RFC 4634
SHA384 .sha384 US Secure Hash Algorithms, RFC 4634
SHA512 .sha512 US Secure Hash Algorithms, RFC 4634
SHA3_224 .sha3-224 Keccak SHA-3
SHA3_256 .sha3-256 Keccak SHA-3
SHA3_384 .sha3-384 Keccak SHA-3
SHA3_512 .sha3-512 Keccak SHA-3
Note that the hashes are used only for unique data identification and download verifica‐
tion.
Custom Fetch Scripts
When a data file must be fetched from one of the URL templates specified in the External‐
Data_URL_TEMPLATES variable, it is normally downloaded using the file(DOWNLOAD) command.
One may specify usage of a custom fetch script by using a URL template of the form Exter‐
nalDataCustomScript://<key>/<loc>. The <key> must be a C identifier, and the <loc> must
contain the %(algo) and %(hash) placeholders. A variable corresponding to the key, Exter‐
nalData_CUSTOM_SCRIPT_<key>, must be set to the full path to a .cmake script file. The
script will be included to perform the actual fetch, and provided with the following vari‐
ables:
ExternalData_CUSTOM_LOCATION
When a custom fetch script is loaded, this variable is set to the location part of
the URL, which will contain the substituted hash algorithm name and content hash
value.
ExternalData_CUSTOM_FILE
When a custom fetch script is loaded, this variable is set to the full path to a
file in which the script must store the fetched content. The name of the file is
unspecified and should not be interpreted in any way.
The custom fetch script is expected to store fetched content in the file or set a vari‐
able:
ExternalData_CUSTOM_ERROR
When a custom fetch script fails to fetch the requested content, it must set this
variable to a short one-line message describing the reason for failure.
ExternalProject
External Project Definition
ExternalProject_Add
The ExternalProject_Add() function creates a custom target to drive download,
update/patch, configure, build, install and test steps of an external project:
ExternalProject_Add(<name> [<option>...])
The individual steps within the process can be driven independently if required
(e.g. for CDash submission) and extra custom steps can be defined, along with the
ability to control the step dependencies. The directory structure used for the man‐
agement of the external project can also be customized. The function supports a
large number of options which can be used to tailor the external project behavior.
Directory Options:
Most of the time, the default directory layout is sufficient. It is largely
an implementation detail that the main project usually doesn’t need to
change. In some circumstances, however, control over the directory layout
can be useful or necessary. The directory options are potentially more use‐
ful from the point of view that the main build can use the
ExternalProject_Get_Property() command to retrieve their values, thereby
allowing the main project to refer to build artifacts of the external
project.
PREFIX <dir>
Root directory for the external project. Unless otherwise noted
below, all other directories associated with the external project
will be created under here.
TMP_DIR <dir>
Directory in which to store temporary files.
STAMP_DIR <dir>
Directory in which to store the timestamps of each step. Log files
from individual steps are also created in here (see Logging Options
below).
DOWNLOAD_DIR <dir>
Directory in which to store downloaded files before unpacking them.
This directory is only used by the URL download method, all other
download methods use SOURCE_DIR directly instead.
SOURCE_DIR <dir>
Source directory into which downloaded contents will be unpacked, or
for non-URL download methods, the directory in which the repository
should be checked out, cloned, etc. If no download method is speci‐
fied, this must point to an existing directory where the external
project has already been unpacked or cloned/checked out.
NOTE:
If a download method is specified, any existing contents of the
source directory may be deleted. Only the URL download method
checks whether this directory is either missing or empty before
initiating the download, stopping with an error if it is not
empty. All other download methods silently discard any previous
contents of the source directory.
BINARY_DIR <dir>
Specify the build directory location. This option is ignored if
BUILD_IN_SOURCE is enabled.
INSTALL_DIR <dir>
Installation prefix to be placed in the <INSTALL_DIR> placeholder.
This does not actually configure the external project to install to
the given prefix. That must be done by passing appropriate arguments
to the external project configuration step, e.g. using <INSTALL_DIR>.
If any of the above ..._DIR options are not specified, their defaults are
computed as follows. If the PREFIX option is given or the EP_PREFIX direc‐
tory property is set, then an external project is built and installed under
the specified prefix:
TMP_DIR = <prefix>/tmp
STAMP_DIR = <prefix>/src/<name>-stamp
DOWNLOAD_DIR = <prefix>/src
SOURCE_DIR = <prefix>/src/<name>
BINARY_DIR = <prefix>/src/<name>-build
INSTALL_DIR = <prefix>
Otherwise, if the EP_BASE directory property is set then components of an
external project are stored under the specified base:
TMP_DIR = <base>/tmp/<name>
STAMP_DIR = <base>/Stamp/<name>
DOWNLOAD_DIR = <base>/Download/<name>
SOURCE_DIR = <base>/Source/<name>
BINARY_DIR = <base>/Build/<name>
INSTALL_DIR = <base>/Install/<name>
If no PREFIX, EP_PREFIX, or EP_BASE is specified, then the default is to set
PREFIX to <name>-prefix. Relative paths are interpreted with respect to
CMAKE_CURRENT_BINARY_DIR at the point where ExternalProject_Add() is called.
Download Step Options:
A download method can be omitted if the SOURCE_DIR option is used to point
to an existing non-empty directory. Otherwise, one of the download methods
below must be specified (multiple download methods should not be given) or a
custom DOWNLOAD_COMMAND provided.
DOWNLOAD_COMMAND <cmd>...
Overrides the command used for the download step (generator expres‐
sions are supported). If this option is specified, all other download
options will be ignored. Providing an empty string for <cmd> effec‐
tively disables the download step.
URL Download
URL <url1> [<url2>...]
List of paths and/or URL(s) of the external project’s source.
When more than one URL is given, they are tried in turn until
one succeeds. A URL may be an ordinary path in the local file
system (in which case it must be the only URL provided) or any
downloadable URL supported by the file(DOWNLOAD) command. A
local filesystem path may refer to either an existing direc‐
tory or to an archive file, whereas a URL is expected to point
to a file which can be treated as an archive. When an archive
is used, it will be unpacked automatically unless the DOWN‐
LOAD_NO_EXTRACT option is set to prevent it. The archive type
is determined by inspecting the actual content rather than
using logic based on the file extension.
URL_HASH ALGO=<value>
Hash of the archive file to be downloaded. The <value> should
be of the form algo=hashValue where algo can be any of the
hashing algorithms supported by the file() command. Specifying
this option is strongly recommended for URL downloads, as it
ensures the integrity of the downloaded content. It is also
used as a check for a previously downloaded file, allowing
connection to the remote location to be avoided altogether if
the local directory already has a file from an earlier down‐
load that matches the specified hash.
URL_MD5 <md5>
Equivalent to URL_HASH MD5=<md5>.
DOWNLOAD_NAME <fname>
File name to use for the downloaded file. If not given, the
end of the URL is used to determine the file name. This option
is rarely needed, the default name is generally suitable and
is not normally used outside of code internal to the External‐
Project module.
DOWNLOAD_NO_EXTRACT <bool>
Allows the extraction part of the download step to be disabled
by passing a boolean true value for this option. If this
option is not given, the downloaded contents will be unpacked
automatically if required. If extraction has been disabled,
the full path to the downloaded file is available as <DOWN‐
LOADED_FILE> in subsequent steps or as the property DOWN‐
LOADED_FILE with the ExternalProject_Get_Property() command.
DOWNLOAD_NO_PROGRESS <bool>
Can be used to disable logging the download progress. If this
option is not given, download progress messages will be
logged.
TIMEOUT <seconds>
Maximum time allowed for file download operations.
HTTP_USERNAME <username>
Username for the download operation if authentication is
required.
HTTP_PASSWORD <password>
Password for the download operation if authentication is
required.
HTTP_HEADER <header1> [<header2>...]
Provides an arbitrary list of HTTP headers for the download
operation. This can be useful for accessing content in sys‐
tems like AWS, etc.
TLS_VERIFY <bool>
Specifies whether certificate verification should be performed
for https URLs. If this option is not provided, the default
behavior is determined by the CMAKE_TLS_VERIFY variable (see
file(DOWNLOAD)). If that is also not set, certificate verifi‐
cation will not be performed. In situations where URL_HASH
cannot be provided, this option can be an alternative verifi‐
cation measure.
TLS_CAINFO <file>
Specify a custom certificate authority file to use if TLS_VER‐
IFY is enabled. If this option is not specified, the value of
the CMAKE_TLS_CAINFO variable will be used instead (see
file(DOWNLOAD))
Git NOTE: A git version of 1.6.5 or later is required if this download
method is used.
GIT_REPOSITORY <url>
URL of the git repository. Any URL understood by the git com‐
mand may be used.
GIT_TAG <tag>
Git branch name, tag or commit hash. Note that branch names
and tags should generally be specified as remote names (i.e.
origin/myBranch rather than simply myBranch). This ensures
that if the remote end has its tag moved or branch rebased or
history rewritten, the local clone will still be updated cor‐
rectly. In general, however, specifying a commit hash should
be preferred for a number of reasons:
· If the local clone already has the commit corresponding to
the hash, no git fetch needs to be performed to check for
changes each time CMake is re-run. This can result in a sig‐
nificant speed up if many external projects are being used.
· Using a specific git hash ensures that the main project’s
own history is fully traceable to a specific point in the
external project’s evolution. If a branch or tag name is
used instead, then checking out a specific commit of the
main project doesn’t necessarily pin the whole build to a
specific point in the life of the external project. The
lack of such deterministic behavior makes the main project
lose traceability and repeatability.
GIT_REMOTE_NAME <name>
The optional name of the remote. If this option is not speci‐
fied, it defaults to origin.
GIT_SUBMODULES <module>...
Specific git submodules that should also be updated. If this
option is not provided, all git submodules will be updated.
GIT_SHALLOW <bool>
When this option is enabled, the git clone operation will be
given the --depth 1 option. This performs a shallow clone,
which avoids downloading the whole history and instead
retrieves just the commit denoted by the GIT_TAG option.
GIT_PROGRESS <bool>
When enabled, this option instructs the git clone operation to
report its progress by passing it the --progress option. With‐
out this option, the clone step for large projects may appear
to make the build stall, since nothing will be logged until
the clone operation finishes. While this option can be used to
provide progress to prevent the appearance of the build having
stalled, it may also make the build overly noisy if lots of
external projects are used.
GIT_CONFIG <option1> [<option2>...]
Specify a list of config options to pass to git clone. Each
option listed will be transformed into its own --config
<option> on the git clone command line, with each option
required to be in the form key=value.
Subversion
SVN_REPOSITORY <url>
URL of the Subversion repository.
SVN_REVISION -r<rev>
Revision to checkout from the Subversion repository.
SVN_USERNAME <username>
Username for the Subversion checkout and update.
SVN_PASSWORD <password>
Password for the Subversion checkout and update.
SVN_TRUST_CERT <bool>
Specifies whether to trust the Subversion server site certifi‐
cate. If enabled, the --trust-server-cert option is passed to
the svn checkout and update commands.
Mercurial
HG_REPOSITORY <url>
URL of the mercurial repository.
HG_TAG <tag>
Mercurial branch name, tag or commit id.
CVS
CVS_REPOSITORY <cvsroot>
CVSROOT of the CVS repository.
CVS_MODULE <mod>
Module to checkout from the CVS repository.
CVS_TAG <tag>
Tag to checkout from the CVS repository.
Update/Patch Step Options:
Whenever CMake is re-run, by default the external project’s sources will be
updated if the download method supports updates (e.g. a git repository would
be checked if the GIT_TAG does not refer to a specific commit).
UPDATE_COMMAND <cmd>...
Overrides the download method’s update step with a custom command.
The command may use generator expressions.
UPDATE_DISCONNECTED <bool>
When enabled, this option causes the update step to be skipped. It
does not, however, prevent the download step. The update step can
still be added as a step target (see
ExternalProject_Add_StepTargets()) and called manually. This is use‐
ful if you want to allow developers to build the project when discon‐
nected from the network (the network may still be needed for the
download step though).
When this option is present, it is generally advisable to make the
value a cache variable under the developer’s control rather than
hard-coding it. If this option is not present, the default value is
taken from the EP_UPDATE_DISCONNECTED directory property. If that is
also not defined, updates are performed as normal. The EP_UPDATE_DIS‐
CONNECTED directory property is intended as a convenience for con‐
trolling the UPDATE_DISCONNECTED behavior for an entire section of a
project’s directory hierarchy and may be a more convenient method of
giving developers control over whether or not to perform updates
(assuming the project also provides a cache variable or some other
convenient method for setting the directory property).
PATCH_COMMAND <cmd>...
Specifies a custom command to patch the sources after an update. By
default, no patch command is defined. Note that it can be quite dif‐
ficult to define an appropriate patch command that performs robustly,
especially for download methods such as git where changing the
GIT_TAG will not discard changes from a previous patch, but the patch
command will be called again after updating to the new tag.
Configure Step Options:
The configure step is run after the download and update steps. By default,
the external project is assumed to be a CMake project, but this can be over‐
ridden if required.
CONFIGURE_COMMAND <cmd>...
The default configure command runs CMake with options based on the
main project. For non-CMake external projects, the CONFIGURE_COMMAND
option must be used to override this behavior (generator expressions
are supported). For projects that require no configure step, specify
this option with an empty string as the command to execute.
CMAKE_COMMAND /.../cmake
Specify an alternative cmake executable for the configure step (use
an absolute path). This is generally not recommended, since it is
usually desirable to use the same CMake version throughout the whole
build. This option is ignored if a custom configure command has been
specified with CONFIGURE_COMMAND.
CMAKE_GENERATOR <gen>
Override the CMake generator used for the configure step. Without
this option, the same generator as the main build will be used. This
option is ignored if a custom configure command has been specified
with the CONFIGURE_COMMAND option.
CMAKE_GENERATOR_PLATFORM <platform>
Pass a generator-specific platform name to the CMake command (see
CMAKE_GENERATOR_PLATFORM). It is an error to provide this option
without the CMAKE_GENERATOR option.
CMAKE_GENERATOR_TOOLSET <toolset>
Pass a generator-specific toolset name to the CMake command (see
CMAKE_GENERATOR_TOOLSET). It is an error to provide this option with‐
out the CMAKE_GENERATOR option.
CMAKE_ARGS <arg>...
The specified arguments are passed to the cmake command line. They
can be any argument the cmake command understands, not just cache
values defined by -D... arguments (see also CMake Options). In addi‐
tion, arguments may use generator expressions.
CMAKE_CACHE_ARGS <arg>...
This is an alternate way of specifying cache variables where command
line length issues may become a problem. The arguments are expected
to be in the form -Dvar:STRING=value, which are then transformed into
CMake set() commands with the FORCE option used. These set() commands
are written to a pre-load script which is then applied using the
cmake -C command line option. Arguments may use generator expres‐
sions.
CMAKE_CACHE_DEFAULT_ARGS <arg>...
This is the same as the CMAKE_CACHE_ARGS option except the set() com‐
mands do not include the FORCE keyword. This means the values act as
initial defaults only and will not override any variables already set
from a previous run. Use this option with care, as it can lead to
different behavior depending on whether the build starts from a fresh
build directory or re-uses previous build contents.
SOURCE_SUBDIR <dir>
When no CONFIGURE_COMMAND option is specified, the configure step
assumes the external project has a CMakeLists.txt file at the top of
its source tree (i.e. in SOURCE_DIR). The SOURCE_SUBDIR option can be
used to point to an alternative directory within the source tree to
use as the top of the CMake source tree instead. This must be a rela‐
tive path and it will be interpreted as being relative to SOURCE_DIR.
Build Step Options:
If the configure step assumed the external project uses CMake as its build
system, the build step will also. Otherwise, the build step will assume a
Makefile-based build and simply run make with no arguments as the default
build step. This can be overridden with custom build commands if required.
BUILD_COMMAND <cmd>...
Overrides the default build command (generator expressions are sup‐
ported). If this option is not given, the default build command will
be chosen to integrate with the main build in the most appropriate
way (e.g. using recursive make for Makefile generators or cmake
--build if the project uses a CMake build). This option can be speci‐
fied with an empty string as the command to make the build step do
nothing.
BUILD_IN_SOURCE <bool>
When this option is enabled, the build will be done directly within
the external project’s source tree. This should generally be avoided,
the use of a separate build directory is usually preferred, but it
can be useful when the external project assumes an in-source build.
The BINARY_DIR option should not be specified if building in-source.
BUILD_ALWAYS <bool>
Enabling this option forces the build step to always be run. This can
be the easiest way to robustly ensure that the external project’s own
build dependencies are evaluated rather than relying on the default
success timestamp-based method. This option is not normally needed
unless developers are expected to modify something the external
project’s build depends on in a way that is not detectable via the
step target dependencies (e.g. SOURCE_DIR is used without a download
method and developers might modify the sources in SOURCE_DIR).
BUILD_BYPRODUCTS <file>...
Specifies files that will be generated by the build command but which
might or might not have their modification time updated by subsequent
builds. These ultimately get passed through as BYPRODUCTS to the
build step’s own underlying call to add_custom_command().
Install Step Options:
If the configure step assumed the external project uses CMake as its build
system, the install step will also. Otherwise, the install step will assume
a Makefile-based build and simply run make install as the default build
step. This can be overridden with custom install commands if required.
INSTALL_COMMAND <cmd>...
The external project’s own install step is invoked as part of the
main project’s build. It is done after the external project’s build
step and may be before or after the external project’s test step (see
the TEST_BEFORE_INSTALL option below). The external project’s install
rules are not part of the main project’s install rules, so if any‐
thing from the external project should be installed as part of the
main build, these need to be specified in the main build as addi‐
tional install() commands. The default install step builds the
install target of the external project, but this can be overridden
with a custom command using this option (generator expressions are
supported). Passing an empty string as the <cmd> makes the install
step do nothing.
Test Step Options:
The test step is only defined if at least one of the following TEST_...
options are provided.
TEST_COMMAND <cmd>...
Overrides the default test command (generator expressions are sup‐
ported). If this option is not given, the default behavior of the
test step is to build the external project’s own test target. This
option can be specified with <cmd> as an empty string, which allows
the test step to still be defined, but it will do nothing. Do not
specify any of the other TEST_... options if providing an empty
string as the test command, but prefer to omit all TEST_... options
altogether if the test step target is not needed.
TEST_BEFORE_INSTALL <bool>
When this option is enabled, the test step will be executed before
the install step. The default behavior is for the test step to run
after the install step.
TEST_AFTER_INSTALL <bool>
This option is mainly useful as a way to indicate that the test step
is desired but all default behavior is sufficient. Specifying this
option with a boolean true value ensures the test step is defined and
that it comes after the install step. If both TEST_BEFORE_INSTALL and
TEST_AFTER_INSTALL are enabled, the latter is silently ignored.
TEST_EXCLUDE_FROM_MAIN <bool>
If enabled, the main build’s default ALL target will not depend on
the test step. This can be a useful way of ensuring the test step is
defined but only gets invoked when manually requested.
Output Logging Options:
Each of the following LOG_... options can be used to wrap the relevant step
in a script to capture its output to files. The log files will be created in
the STAMP_DIR directory with step-specific file names.
LOG_DOWNLOAD <bool>
When enabled, the output of the download step is logged to files.
LOG_UPDATE <bool>
When enabled, the output of the update step is logged to files.
LOG_CONFIGURE <bool>
When enabled, the output of the configure step is logged to files.
LOG_BUILD <bool>
When enabled, the output of the build step is logged to files.
LOG_INSTALL <bool>
When enabled, the output of the install step is logged to files.
LOG_TEST <bool>
When enabled, the output of the test step is logged to files.
Terminal Access Options:
Steps can be given direct access to the terminal in some cases. Giving a
step access to the terminal may allow it to receive terminal input if
required, such as for authentication details not provided by other options.
With the Ninja generator, these options place the steps in the console job
pool. Each step can be given access to the terminal individually via the
following options:
USES_TERMINAL_DOWNLOAD <bool>
Give the download step access to the terminal.
USES_TERMINAL_UPDATE <bool>
Give the update step access to the terminal.
USES_TERMINAL_CONFIGURE <bool>
Give the configure step access to the terminal.
USES_TERMINAL_BUILD <bool>
Give the build step access to the terminal.
USES_TERMINAL_INSTALL <bool>
Give the install step access to the terminal.
USES_TERMINAL_TEST <bool>
Give the test step access to the terminal.
Target Options:
DEPENDS <targets>...
Specify other targets on which the external project depends. The
other targets will be brought up to date before any of the external
project’s steps are executed. Because the external project uses addi‐
tional custom targets internally for each step, the DEPENDS option is
the most convenient way to ensure all of those steps depend on the
other targets. Simply doing add_dependencies(<name> <targets>) will
not make any of the steps dependent on <targets>.
EXCLUDE_FROM_ALL <bool>
When enabled, this option excludes the external project from the
default ALL target of the main build.
STEP_TARGETS <step-target>...
Generate custom targets for the specified steps. This is required if
the steps need to be triggered manually or if they need to be used as
dependencies of other targets. If this option is not specified, the
default value is taken from the EP_STEP_TARGETS directory property.
See ExternalProject_Add_Step() below for further discussion of the
effects of this option.
INDEPENDENT_STEP_TARGETS <step-target>...
Generate custom targets for the specified steps and prevent these
targets from having the usual dependencies applied to them. If this
option is not specified, the default value is taken from the EP_INDE‐
PENDENT_STEP_TARGETS directory property. This option is mostly useful
for allowing individual steps to be driven independently, such as for
a CDash setup where each step should be initiated and reported indi‐
vidually rather than as one whole build. See
ExternalProject_Add_Step() below for further discussion of the
effects of this option.
Miscellaneous Options:
LIST_SEPARATOR <sep>
For any of the various ..._COMMAND options, replace ; with <sep> in
the specified command lines. This can be useful where list variables
may be given in commands where they should end up as space-separated
arguments (<sep> would be a single space character string in this
case).
COMMAND <cmd>...
Any of the other ..._COMMAND options can have additional commands
appended to them by following them with as many COMMAND ... options
as needed (generator expressions are supported). For example:
ExternalProject_Add(example
... # Download options, etc.
BUILD_COMMAND ${CMAKE_COMMAND} -E echo "Starting $<CONFIG> build"
COMMAND ${CMAKE_COMMAND} --build <BINARY_DIR> --config $<CONF ↲
IG>
COMMAND ${CMAKE_COMMAND} -E echo "$<CONFIG> build complete"
)
It should also be noted that each build step is created via a call to
ExternalProject_Add_Step(). See that command’s documentation for the automatic sub‐
stitutions that are supported for some options.
Obtaining Project Properties
ExternalProject_Get_Property
The ExternalProject_Get_Property() function retrieves external project target prop‐
erties:
ExternalProject_Get_Property(<name> <prop1> [<prop2>...])
The function stores property values in variables of the same name. Property names
correspond to the keyword argument names of ExternalProject_Add(). For example,
the source directory might be retrieved like so:
ExternalProject_Get_property(myExtProj SOURCE_DIR)
message("Source dir of myExtProj = ${SOURCE_DIR}")
Explicit Step Management
The ExternalProject_Add() function on its own is often sufficient for incorporating an
external project into the main build. Certain scenarios require additional work to imple‐
ment desired behavior, such as adding in a custom step or making steps available as manu‐
ally triggerable targets. The ExternalProject_Add_Step(), ExternalProject_Add_StepTar‐
gets() and ExternalProject_Add_StepDependencies functions provide the lower level control
needed to implement such step-level capabilities.
ExternalProject_Add_Step
The ExternalProject_Add_Step() function specifies an additional custom step for an
external project defined by an earlier call to ExternalProject_Add():
ExternalProject_Add_Step(<name> <step> [<option>...])
<name> is the same as the name passed to the original call to
ExternalProject_Add(). The specified <step> must not be one of the pre-defined
steps (mkdir, download, update, skip-update, patch, configure, build, install or
test). The supported options are:
COMMAND <cmd>...
The command line to be executed by this custom step (generator expressions
are supported). This option can be repeated multiple times to specify multi‐
ple commands to be executed in order.
COMMENT <text>...
Text to be printed when the custom step executes.
DEPENDEES <step>...
Other steps (custom or pre-defined) on which this step depends.
DEPENDERS <step>...
Other steps (custom or pre-defined) that depend on this new custom step.
DEPENDS <file>...
Files on which this custom step depends.
BYPRODUCTS <file>...
Files that will be generated by this custom step but which might or might
not have their modification time updated by subsequent builds. This list of
files will ultimately be passed through as the BYPRODUCTS option to the
add_custom_command() used to implement the custom step internally.
ALWAYS <bool>
When enabled, this option specifies that the custom step should always be
run (i.e. that it is always considered out of date).
EXCLUDE_FROM_MAIN <bool>
When enabled, this option specifies that the external project’s main target
does not depend on the custom step.
WORKING_DIRECTORY <dir>
Specifies the working directory to set before running the custom step’s com‐
mand. If this option is not specified, the directory will be the value of
the CMAKE_CURRENT_BINARY_DIR at the point where ExternalProject_Add_Step()
was called.
LOG <bool>
If set, this causes the output from the custom step to be captured to files
in the external project’s STAMP_DIR.
USES_TERMINAL <bool>
If enabled, this gives the custom step direct access to the terminal if pos‐
sible.
The command line, comment, working directory and byproducts of every standard and
custom step are processed to replace the tokens <SOURCE_DIR>, <SOURCE_SUBDIR>,
<BINARY_DIR>, <INSTALL_DIR> and <TMP_DIR> with their corresponding property values
defined in the original call to ExternalProject_Add().
ExternalProject_Add_StepTargets
The ExternalProject_Add_StepTargets() function generates targets for the steps
listed. The name of each created target will be of the form <name>-<step>:
ExternalProject_Add_StepTargets(<name> [NO_DEPENDS] <step1> [<step2>...])
Creating a target for a step allows it to be used as a dependency of another target
or to be triggered manually. Having targets for specific steps also allows them to
be driven independently of each other by specifying targets on build command lines.
For example, you may be submitting to a sub-project based dashboard where you want
to drive the configure portion of the build, then submit to the dashboard, followed
by the build portion, followed by tests. If you invoke a custom target that depends
on a step halfway through the step dependency chain, then all the previous steps
will also run to ensure everything is up to date.
If the NO_DEPENDS option is specified, the step target will not depend on the
dependencies of the external project (i.e. on any dependencies of the <name> custom
target created by ExternalProject_Add()). This is usually safe for the download,
update and patch steps, since they do not typically require that the dependencies
are updated and built. Using NO_DEPENDS for any of the other pre-defined steps,
however, may break parallel builds. Only use NO_DEPENDS where it is certain that
the named steps genuinely do not have dependencies. For custom steps, consider
whether or not the custom commands require the dependencies to be configured, built
and installed.
Internally, ExternalProject_Add() calls ExternalProject_Add_Step() to create each
step. If any STEP_TARGETS or INDEPENDENT_STEP_TARGETS were specified, then Exter‐
nalProject_Add_StepTargets() will also be called after ExternalProject_Add_Step().
INDEPENDENT_STEP_TARGETS have the NO_DEPENDS option set, whereas STEP_TARGETS do
not. Other than that, the two options result in ExternalProject_Add_StepTargets()
being called in the same way. Even if a step is not mentioned in either of those
two options, ExternalProject_Add_StepTargets() can still be called later to manu‐
ally define a target for the step.
The STEP_TARGETS and INDEPENDENT_STEP_TARGETS options for ExternalProject_Add() are
generally the easiest way to ensure targets are created for specific steps of
interest. For custom steps, ExternalProject_Add_StepTargets() must be called
explicitly if a target should also be created for that custom step. An alternative
to these two options is to populate the EP_STEP_TARGETS and EP_INDEPEN‐
DENT_STEP_TARGETS directory properties. These act as defaults for the step target
options and can save having to repeatedly specify the same set of step targets when
multiple external projects are being defined.
ExternalProject_Add_StepDependencies
The ExternalProject_Add_StepDependencies() function can be used to add dependencies
to a step. The dependencies added must be targets CMake already knows about (these
can be ordinary executable or library targets, custom targets or even step targets
of another external project):
ExternalProject_Add_StepDependencies(<name> <step> <target1> [<target2>...])
This function takes care to set both target and file level dependencies and will
ensure that parallel builds will not break. It should be used instead of add_depen‐
dencies() whenever adding a dependency for some of the step targets generated by
the ExternalProject module.
Examples
The following example shows how to download and build a hypothetical project called FooBar
from github:
include(ExternalProject)
ExternalProject_Add(foobar
GIT_REPOSITORY
@github.com:FooCo/FooBar.git
GIT_TAG origin/release/1.2.3
)
For the sake of the example, also define a second hypothetical external project called
SecretSauce, which is downloaded from a web server. Two URLs are given to take advantage
of a faster internal network if available, with a fallback to a slower external server.
The project is a typical Makefile project with no configure step, so some of the default
commands are overridden. The build is only required to build the sauce target:
find_program(MAKE_EXE NAMES gmake nmake make)
ExternalProject_Add(secretsauce
URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz
https://www.somecompany.com/downloads/sauce-2.7.zip
URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427e
CONFIGURE_COMMAND ""
BUILD_COMMAND ${MAKE_EXE} sauce
)
Suppose the build step of secretsauce requires that foobar must already be built. This
could be enforced like so:
ExternalProject_Add_StepDependencies(secretsauce build foobar)
Another alternative would be to create a custom target for foobar’s build step and make
secretsauce depend on that rather than the whole foobar project. This would mean foobar
only needs to be built, it doesn’t need to run its install or test steps before secret‐
sauce can be built. The dependency can also be defined along with the secretsauce project:
ExternalProject_Add_StepTargets(foobar build)
ExternalProject_Add(secretsauce
URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz
https://www.somecompany.com/downloads/sauce-2.7.zip
URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427e
CONFIGURE_COMMAND ""
BUILD_COMMAND ${MAKE_EXE} sauce
DEPENDS foobar-build
)
Instead of calling ExternalProject_Add_StepTargets(), the target could be defined along
with the foobar project itself:
ExternalProject_Add(foobar
GIT_REPOSITORY
@github.com:FooCo/FooBar.git
GIT_TAG origin/release/1.2.3
STEP_TARGETS build
)
If many external projects should have the same set of step targets, setting a directory
property may be more convenient. The build step target could be created automatically by
setting the EP_STEP_TARGETS directory property before creating the external projects with
ExternalProject_Add():
set_property(DIRECTORY PROPERTY EP_STEP_TARGETS build)
Lastly, suppose that secretsauce provides a script called makedoc which can be used to
generate its own documentation. Further suppose that the script expects the output direc‐
tory to be provided as the only parameter and that it should be run from the secretsauce
source directory. A custom step and a custom target to trigger the script can be defined
like so:
ExternalProject_Add_Step(secretsauce docs
COMMAND <SOURCE_DIR>/makedoc <BINARY_DIR>
WORKING_DIRECTORY <SOURCE_DIR>
COMMENT "Building secretsauce docs"
ALWAYS TRUE
EXCLUDE_FROM_MAIN TRUE
)
ExternalProject_Add_StepTargets(secretsauce docs)
The custom step could then be triggered from the main build like so:
cmake --build . --target secretsauce-docs
FeatureSummary
Functions for generating a summary of enabled/disabled features.
These functions can be used to generate a summary of enabled and disabled packages and/or
feature for a build tree such as:
-- The following OPTIONAL packages have been found:
LibXml2 (required version >= 2.4), XML processing lib, <http://xmlsoft.org>
* Enables HTML-import in MyWordProcessor
* Enables odt-export in MyWordProcessor
PNG, A PNG image library., <http://www.libpng.org/pub/png/>
* Enables saving screenshots
-- The following OPTIONAL packages have not been found:
Lua51, The Lua scripting language., <http://www.lua.org>
* Enables macros in MyWordProcessor
Foo, Foo provides cool stuff.
Global Properties
FeatureSummary_PKG_TYPES
The global property FeatureSummary_PKG_TYPES defines the type of packages used by Feature‐
Summary.
The order in this list is important, the first package type in the list is the least
important, the last is the most important. the of a package can only be changed to higher
types.
The default package types are , RUNTIME, OPTIONAL, RECOMMENDED and REQUIRED, and their
importance is RUNTIME < OPTIONAL < RECOMMENDED < REQUIRED.
FeatureSummary_REQUIRED_PKG_TYPES
The global property FeatureSummary_REQUIRED_PKG_TYPES defines which package types are
required.
If one or more package in this categories has not been found, CMake will abort when call‐
ing feature_summary() with the ‘FATAL_ON_MISSING_REQUIRED_PACKAGES’ option enabled.
The default value for this global property is REQUIRED.
FeatureSummary_DEFAULT_PKG_TYPE
The global property FeatureSummary_DEFAULT_PKG_TYPE defines which package type is the
default one. When calling feature_summary(), if the user did not set the package type
explicitly, the package will be assigned to this category.
This value must be one of the types defined in the FeatureSummary_PKG_TYPES global prop‐
erty unless the package type is set for all the packages.
The default value for this global property is OPTIONAL.
FeatureSummary_<TYPE>_DESCRIPTION
The global property FeatureSummary_<TYPE>_DESCRIPTION can be defined for each type to
replace the type name with the specified string whenever the package type is used in an
output string.
If not set, the string “<TYPE> packages” is used.
Functions
feature_summary
feature_summary( [FILENAME <file>]
[APPEND]
[VAR <variable_name>]
[INCLUDE_QUIET_PACKAGES]
[FATAL_ON_MISSING_REQUIRED_PACKAGES]
[DESCRIPTION "<description>" | DEFAULT_DESCRIPTION]
[QUIET_ON_EMPTY]
WHAT (ALL
| PACKAGES_FOUND | PACKAGES_NOT_FOUND
| <TYPE>_PACKAGES_FOUND | <TYPE>_PACKAGES_NOT_FOUND
| ENABLED_FEATURES | DISABLED_FEATURES)
)
The feature_summary() macro can be used to print information about enabled or dis‐
abled packages or features of a project. By default, only the names of the fea‐
tures/packages will be printed and their required version when one was specified.
Use set_package_properties() to add more useful information, like e.g. a download
URL for the respective package or their purpose in the project.
The WHAT option is the only mandatory option. Here you specify what information
will be printed:
ALL print everything
ENABLED_FEATURES
the list of all features which are enabled
DISABLED_FEATURES
the list of all features which are disabled
PACKAGES_FOUND
the list of all packages which have been found
PACKAGES_NOT_FOUND
the list of all packages which have not been found
For each package type <TYPE> defined by the FeatureSummary_PKG_TYPES global prop‐
erty, the following information can also be used:
<TYPE>_PACKAGES_FOUND
only those packages which have been found which have the type <TYPE>
<TYPE>_PACKAGES_NOT_FOUND
only those packages which have not been found which have the type <TYPE>
With the exception of the ALL value, these values can be combined in order to cus‐
tomize the output. For example:
feature_summary(WHAT ENABLED_FEATURES DISABLED_FEATURES)
If a FILENAME is given, the information is printed into this file. If APPEND is
used, it is appended to this file, otherwise the file is overwritten if it already
existed. If the VAR option is used, the information is “printed” into the speci‐
fied variable. If FILENAME is not used, the information is printed to the termi‐
nal. Using the DESCRIPTION option a description or headline can be set which will
be printed above the actual content. If only one type of package was requested, no
title is printed, unless it is explicitly set using either DESCRIPTION to use a
custom string, or DEFAULT_DESCRIPTION to use a default title for the requested
type. If INCLUDE_QUIET_PACKAGES is given, packages which have been searched with
find_package(... QUIET) will also be listed. By default they are skipped. If
FATAL_ON_MISSING_REQUIRED_PACKAGES is given, CMake will abort if a package which is
marked as one of the package types listed in the FeatureSummary_REQUIRED_PKG_TYPES
global property has not been found. The default value for the
FeatureSummary_REQUIRED_PKG_TYPES global property is REQUIRED.
The FeatureSummary_DEFAULT_PKG_TYPE global property can be modified to change the
default package type assigned when not explicitly assigned by the user.
If the QUIET_ON_EMPTY option is used, if only one type of package was requested,
and no packages belonging to that category were found, then no output (including
the DESCRIPTION) is printed or added to the VAR variable.
Example 1, append everything to a file:
include(FeatureSummary)
feature_summary(WHAT ALL
FILENAME ${CMAKE_BINARY_DIR}/all.log APPEND)
Example 2, print the enabled features into the variable enabledFeaturesText,
including QUIET packages:
include(FeatureSummary)
feature_summary(WHAT ENABLED_FEATURES
INCLUDE_QUIET_PACKAGES
DESCRIPTION "Enabled Features:"
VAR enabledFeaturesText)
message(STATUS "${enabledFeaturesText}")
Example 3, change default package types and print only the categories that are not
empty:
include(FeatureSummary)
set_property(GLOBAL APPEND PROPERTY FeatureSummary_PKG_TYPES BUILD)
find_package(FOO)
set_package_properties(FOO PROPERTIES TYPE BUILD)
feature_summary(WHAT BUILD_PACKAGES_FOUND
Description "Build tools found:"
QUIET_ON_EMPTY)
feature_summary(WHAT BUILD_PACKAGES_NOT_FOUND
Description "Build tools not found:"
QUIET_ON_EMPTY)
set_package_properties
set_package_properties(<name> PROPERTIES
[ URL <url> ]
[ DESCRIPTION <description> ]
[ TYPE (RUNTIME|OPTIONAL|RECOMMENDED|REQUIRED) ]
[ PURPOSE <purpose> ]
)
Use this macro to set up information about the named package, which can then be
displayed via FEATURE_SUMMARY(). This can be done either directly in the Find-mod‐
ule or in the project which uses the module after the find_package() call. The
features for which information can be set are added automatically by the find_pack‐
age() command.
URL <url>
This should be the homepage of the package, or something similar. Ideally
this is set already directly in the Find-module.
DESCRIPTION <description>
A short description what that package is, at most one sentence. Ideally
this is set already directly in the Find-module.
TYPE <type>
What type of dependency has the using project on that package. Default is
OPTIONAL. In this case it is a package which can be used by the project
when available at buildtime, but it also work without. RECOMMENDED is simi‐
lar to OPTIONAL, i.e. the project will build if the package is not present,
but the functionality of the resulting binaries will be severly limited. If
a REQUIRED package is not available at buildtime, the project may not even
build. This can be combined with the FATAL_ON_MISSING_REQUIRED_PACKAGES
argument for feature_summary(). Last, a RUNTIME package is a package which
is actually not used at all during the build, but which is required for
actually running the resulting binaries. So if such a package is missing,
the project can still be built, but it may not work later on. If set_pack‐
age_properties() is called multiple times for the same package with differ‐
ent TYPEs, the TYPE is only changed to higher TYPEs (RUNTIME < OPTIONAL <
RECOMMENDED < REQUIRED), lower TYPEs are ignored. The TYPE property is
project-specific, so it cannot be set by the Find-module, but must be set in
the project. Type accepted can be changed by setting the
FeatureSummary_PKG_TYPES global property.
PURPOSE <purpose>
This describes which features this package enables in the project, i.e. it
tells the user what functionality he gets in the resulting binaries. If
set_package_properties() is called multiple times for a package, all PURPOSE
properties are appended to a list of purposes of the package in the project.
As the TYPE property, also the PURPOSE property is project-specific, so it
cannot be set by the Find-module, but must be set in the project.
Example for setting the info for a package:
find_package(LibXml2)
set_package_properties(LibXml2 PROPERTIES
DESCRIPTION "A XML processing library."
URL "http://xmlsoft.org/")
# or
set_package_properties(LibXml2 PROPERTIES
TYPE RECOMMENDED
PURPOSE "Enables HTML-import in MyWordProcessor")
# or
set_package_properties(LibXml2 PROPERTIES
TYPE OPTIONAL
PURPOSE "Enables odt-export in MyWordProcessor")
find_package(DBUS)
set_package_properties(DBUS PROPERTIES
TYPE RUNTIME
PURPOSE "Necessary to disable the screensaver during a presentation")
add_feature_info
add_feature_info(<name> <enabled> <description>)
Use this macro to add information about a feature with the given <name>. <enabled>
contains whether this feature is enabled or not. It can be a variable or a list of
conditions. <description> is a text describing the feature. The information can
be displayed using feature_summary() for ENABLED_FEATURES and DISABLED_FEATURES
respectively.
Example for setting the info for a feature:
option(WITH_FOO "Help for foo" ON)
add_feature_info(Foo WITH_FOO "The Foo feature provides very cool stuff.")
Legacy Macros
The following macros are provided for compatibility with previous CMake versions:
set_package_info
set_package_info(<name> <description> [ <url> [<purpose>] ])
Use this macro to set up information about the named package, which can then be
displayed via feature_summary(). This can be done either directly in the Find-mod‐
ule or in the project which uses the module after the find_package() call. The
features for which information can be set are added automatically by the find_pack‐
age() command.
set_feature_info
set_feature_info(<name> <description> [<url>])
Does the same as:
set_package_info(<name> <description> <url>)
print_enabled_features
print_enabled_features()
Does the same as
feature_summary(WHAT ENABLED_FEATURES DESCRIPTION "Enabled features:")
print_disabled_features
print_disabled_features()
Does the same as
feature_summary(WHAT DISABLED_FEATURES DESCRIPTION "Disabled features:")
FindALSA
Find alsa
Find the alsa libraries (asound)
This module defines the following variables:
ALSA_FOUND - True if ALSA_INCLUDE_DIR & ALSA_LIBRARY are found
ALSA_LIBRARIES - Set when ALSA_LIBRARY is found
ALSA_INCLUDE_DIRS - Set when ALSA_INCLUDE_DIR is found
ALSA_INCLUDE_DIR - where to find asoundlib.h, etc.
ALSA_LIBRARY - the asound library
ALSA_VERSION_STRING - the version of alsa found (since CMake 2.8.8)
FindArmadillo
Find Armadillo
Find the Armadillo C++ library
Using Armadillo:
find_package(Armadillo REQUIRED)
include_directories(${ARMADILLO_INCLUDE_DIRS})
add_executable(foo foo.cc)
target_link_libraries(foo ${ARMADILLO_LIBRARIES})
This module sets the following variables:
ARMADILLO_FOUND - set to true if the library is found
ARMADILLO_INCLUDE_DIRS - list of required include directories
ARMADILLO_LIBRARIES - list of libraries to be linked
ARMADILLO_VERSION_MAJOR - major version number
ARMADILLO_VERSION_MINOR - minor version number
ARMADILLO_VERSION_PATCH - patch version number
ARMADILLO_VERSION_STRING - version number as a string (ex: "1.0.4")
ARMADILLO_VERSION_NAME - name of the version (ex: "Antipodean Antileech")
FindASPELL
Try to find ASPELL
Once done this will define
ASPELL_FOUND - system has ASPELL
ASPELL_EXECUTABLE - the ASPELL executable
ASPELL_INCLUDE_DIR - the ASPELL include directory
ASPELL_LIBRARIES - The libraries needed to use ASPELL
ASPELL_DEFINITIONS - Compiler switches required for using ASPELL
FindAVIFile
Locate AVIFILE library and include paths
AVIFILE (http://avifile.sourceforge.net/)is a set of libraries for i386 machines to use
various AVI codecs. Support is limited beyond Linux. Windows provides native AVI sup‐
port, and so doesn’t need this library. This module defines
AVIFILE_INCLUDE_DIR, where to find avifile.h , etc.
AVIFILE_LIBRARIES, the libraries to link against
AVIFILE_DEFINITIONS, definitions to use when compiling
AVIFILE_FOUND, If false, don't try to use AVIFILE
FindBISON
Find bison executable and provide a macro to generate custom build rules.
The module defines the following variables:
BISON_EXECUTABLE
path to the bison program
BISON_VERSION
version of bison
BISON_FOUND
true if the program was found
The minimum required version of bison can be specified using the standard CMake syntax,
e.g. find_package(BISON 2.1.3).
If bison is found, the module defines the macro:
BISON_TARGET(<Name> <YaccInput> <CodeOutput>
[COMPILE_FLAGS <flags>]
[DEFINES_FILE <file>]
[VERBOSE [<file>]]
[REPORT_FILE <file>]
)
which will create a custom rule to generate a parser. <YaccInput> is the path to a yacc
file. <CodeOutput> is the name of the source file generated by bison. A header file is
also be generated, and contains the token list.
The options are:
COMPILE_FLAGS <flags>
Specify flags to be added to the bison command line.
DEFINES_FILE <file>
Specify a non-default header <file> to be generated by bison.
VERBOSE [<file>]
Tell bison to write a report file of the grammar and parser. If <file> is given,
it specifies path the report file is copied to. [<file>] is left for backward com‐
patibility of this module. Use VERBOSE REPORT_FILE <file>.
REPORT_FILE <file>
Specify a non-default report <file>, if generated.
The macro defines the following variables:
BISON_<Name>_DEFINED
true is the macro ran successfully
BISON_<Name>_INPUT
The input source file, an alias for <YaccInput>
BISON_<Name>_OUTPUT_SOURCE
The source file generated by bison
BISON_<Name>_OUTPUT_HEADER
The header file generated by bison
BISON_<Name>_OUTPUTS
All files generated by bison including the source, the header and the report
BISON_<Name>_COMPILE_FLAGS
Options used in the bison command line
Example usage:
find_package(BISON)
BISON_TARGET(MyParser parser.y ${CMAKE_CURRENT_BINARY_DIR}/parser.cpp
DEFINES_FILE ${CMAKE_CURRENT_BINARY_DIR}/parser.h)
add_executable(Foo main.cpp ${BISON_MyParser_OUTPUTS})
FindBLAS
Find BLAS library
This module finds an installed fortran library that implements the BLAS linear-algebra
interface (see http://www.netlib.org/blas/). The list of libraries searched for is taken
from the autoconf macro file, acx_blas.m4 (distributed at
http://ac-archive.sourceforge.net/ac-archive/acx_blas.html).
This module sets the following variables:
BLAS_FOUND - set to true if a library implementing the BLAS interface
is found
BLAS_LINKER_FLAGS - uncached list of required linker flags (excluding -l
and -L).
BLAS_LIBRARIES - uncached list of libraries (using full path name) to
link against to use BLAS
BLAS95_LIBRARIES - uncached list of libraries (using full path name)
to link against to use BLAS95 interface
BLAS95_FOUND - set to true if a library implementing the BLAS f95 interface
is found
BLA_STATIC if set on this determines what kind of linkage we do (static)
BLA_VENDOR if set checks only the specified vendor, if not set checks
all the possibilities
BLA_F95 if set on tries to find the f95 interfaces for BLAS/LAPACK
List of vendors (BLA_VENDOR) valid in this module:
· Goto
· OpenBLAS
· ATLAS PhiPACK
· CXML
· DXML
· SunPerf
· SCSL
· SGIMATH
· IBMESSL
· Intel10_32 (intel mkl v10 32 bit)
· Intel10_64lp (intel mkl v10 64 bit, lp thread model, lp64 model)
· Intel10_64lp_seq (intel mkl v10 64 bit, sequential code, lp64 model)
· Intel (older versions of mkl 32 and 64 bit)
· ACML
· ACML_MP
· ACML_GPU
· Apple
· NAS
· Generic
NOTE:
C/CXX should be enabled to use Intel mkl
FindBacktrace
Find provider for backtrace(3).
Checks if OS supports backtrace(3) via either libc or custom library. This module defines
the following variables:
Backtrace_HEADER
The header file needed for backtrace(3). Cached. Could be forcibly set by user.
Backtrace_INCLUDE_DIRS
The include directories needed to use backtrace(3) header.
Backtrace_LIBRARIES
The libraries (linker flags) needed to use backtrace(3), if any.
Backtrace_FOUND
Is set if and only if backtrace(3) support detected.
The following cache variables are also available to set or use:
Backtrace_LIBRARY
The external library providing backtrace, if any.
Backtrace_INCLUDE_DIR
The directory holding the backtrace(3) header.
Typical usage is to generate of header file using configure_file() with the contents like
the following:
#cmakedefine01 Backtrace_FOUND
#if Backtrace_FOUND
# include <${Backtrace_HEADER}>
#endif
And then reference that generated header file in actual source.
FindBoost
Find Boost include dirs and libraries
Use this module by invoking find_package with the form:
find_package(Boost
[version] [EXACT] # Minimum or EXACT version e.g. 1.36.0
[REQUIRED] # Fail with error if Boost is not found
[COMPONENTS <libs>...] # Boost libraries by their canonical name
) # e.g. "date_time" for "libboost_date_time"
This module finds headers and requested component libraries OR a CMake package configura‐
tion file provided by a “Boost CMake” build. For the latter case skip to the “Boost
CMake” section below. For the former case results are reported in variables:
Boost_FOUND - True if headers and requested libraries were found
Boost_INCLUDE_DIRS - Boost include directories
Boost_LIBRARY_DIRS - Link directories for Boost libraries
Boost_LIBRARIES - Boost component libraries to be linked
Boost_<C>_FOUND - True if component <C> was found (<C> is upper-case)
Boost_<C>_LIBRARY - Libraries to link for component <C> (may include
target_link_libraries debug/optimized keywords)
Boost_VERSION - BOOST_VERSION value from boost/version.hpp
Boost_LIB_VERSION - Version string appended to library filenames
Boost_MAJOR_VERSION - Boost major version number (X in X.y.z)
Boost_MINOR_VERSION - Boost minor version number (Y in x.Y.z)
Boost_SUBMINOR_VERSION - Boost subminor version number (Z in x.y.Z)
Boost_LIB_DIAGNOSTIC_DEFINITIONS (Windows)
- Pass to add_definitions() to have diagnostic
information about Boost's automatic linking
displayed during compilation
This module reads hints about search locations from variables:
BOOST_ROOT - Preferred installation prefix
(or BOOSTROOT)
BOOST_INCLUDEDIR - Preferred include directory e.g. <prefix>/include
BOOST_LIBRARYDIR - Preferred library directory e.g. <prefix>/lib
Boost_NO_SYSTEM_PATHS - Set to ON to disable searching in locations not
specified by these hint variables. Default is OFF.
Boost_ADDITIONAL_VERSIONS
- List of Boost versions not known to this module
(Boost install locations may contain the version)
and saves search results persistently in CMake cache entries:
Boost_INCLUDE_DIR - Directory containing Boost headers
Boost_LIBRARY_DIR_RELEASE - Directory containing release Boost libraries
Boost_LIBRARY_DIR_DEBUG - Directory containing debug Boost libraries
Boost_<C>_LIBRARY_DEBUG - Component <C> library debug variant
Boost_<C>_LIBRARY_RELEASE - Component <C> library release variant
The following IMPORTED targets are also defined:
Boost::boost - Target for header-only dependencies
(Boost include directory)
Boost::<C> - Target for specific component dependency
(shared or static library); <C> is lower-
case
Boost::diagnostic_definitions - interface target to enable diagnostic
information about Boost's automatic linking
during compilation (adds BOOST_LIB_DIAGNOSTIC)
Boost::disable_autolinking - interface target to disable automatic
linking with MSVC (adds BOOST_ALL_NO_LIB)
Boost::dynamic_linking - interface target to enable dynamic linking
linking with MSVC (adds BOOST_ALL_DYN_LINK)
Implicit dependencies such as Boost::filesystem requiring Boost::system will be automati‐
cally detected and satisfied, even if system is not specified when using find_package and
if Boost::system is not added to target_link_libraries. If using Boost::thread, then
Threads::Threads will also be added automatically.
It is important to note that the imported targets behave differently than variables cre‐
ated by this module: multiple calls to find_package(Boost) in the same directory or
sub-directories with different options (e.g. static or shared) will not override the val‐
ues of the targets created by the first call.
Users may set these hints or results as cache entries. Projects should not read these
entries directly but instead use the above result variables. Note that some hint names
start in upper-case “BOOST”. One may specify these as environment variables if they are
not specified as CMake variables or cache entries.
This module first searches for the Boost header files using the above hint variables
(excluding BOOST_LIBRARYDIR) and saves the result in Boost_INCLUDE_DIR. Then it searches
for requested component libraries using the above hints (excluding BOOST_INCLUDEDIR and
Boost_ADDITIONAL_VERSIONS), “lib” directories near Boost_INCLUDE_DIR, and the library name
configuration settings below. It saves the library directories in Boost_LIBRARY_DIR_DEBUG
and Boost_LIBRARY_DIR_RELEASE and individual library locations in Boost_<C>_LIBRARY_DEBUG
and Boost_<C>_LIBRARY_RELEASE. When one changes settings used by previous searches in the
same build tree (excluding environment variables) this module discards previous search
results affected by the changes and searches again.
Boost libraries come in many variants encoded in their file name. Users or projects may
tell this module which variant to find by setting variables:
Boost_USE_DEBUG_LIBS - Set to ON or OFF to specify whether to search
and use the debug libraries. Default is ON.
Boost_USE_RELEASE_LIBS - Set to ON or OFF to specify whether to search
and use the release libraries. Default is ON.
Boost_USE_MULTITHREADED - Set to OFF to use the non-multithreaded
libraries ('mt' tag). Default is ON.
Boost_USE_STATIC_LIBS - Set to ON to force the use of the static
libraries. Default is OFF.
Boost_USE_STATIC_RUNTIME - Set to ON or OFF to specify whether to use
libraries linked statically to the C++ runtime
('s' tag). Default is platform dependent.
Boost_USE_DEBUG_RUNTIME - Set to ON or OFF to specify whether to use
libraries linked to the MS debug C++ runtime
('g' tag). Default is ON.
Boost_USE_DEBUG_PYTHON - Set to ON to use libraries compiled with a
debug Python build ('y' tag). Default is OFF.
Boost_USE_STLPORT - Set to ON to use libraries compiled with
STLPort ('p' tag). Default is OFF.
Boost_USE_STLPORT_DEPRECATED_NATIVE_IOSTREAMS
- Set to ON to use libraries compiled with
STLPort deprecated "native iostreams"
('n' tag). Default is OFF.
Boost_COMPILER - Set to the compiler-specific library suffix
(e.g. "-gcc43"). Default is auto-computed
for the C++ compiler in use. A list may be
used if multiple compatible suffixes should
be tested for, in decreasing order of
preference.
Boost_THREADAPI - Suffix for "thread" component library name,
such as "pthread" or "win32". Names with
and without this suffix will both be tried.
Boost_NAMESPACE - Alternate namespace used to build boost with
e.g. if set to "myboost", will search for
myboost_thread instead of boost_thread.
Other variables one may set to control this module are:
Boost_DEBUG - Set to ON to enable debug output from FindBoost.
Please enable this before filing any bug report.
Boost_DETAILED_FAILURE_MSG
- Set to ON to add detailed information to the
failure message even when the REQUIRED option
is not given to the find_package call.
Boost_REALPATH - Set to ON to resolve symlinks for discovered
libraries to assist with packaging. For example,
the "system" component library may be resolved to
"/usr/lib/libboost_system.so.1.42.0" instead of
"/usr/lib/libboost_system.so". This does not
affect linking and should not be enabled unless
the user needs this information.
Boost_LIBRARY_DIR - Default value for Boost_LIBRARY_DIR_RELEASE and
Boost_LIBRARY_DIR_DEBUG.
On Visual Studio and Borland compilers Boost headers request automatic linking to corre‐
sponding libraries. This requires matching libraries to be linked explicitly or available
in the link library search path. In this case setting Boost_USE_STATIC_LIBS to OFF may
not achieve dynamic linking. Boost automatic linking typically requests static libraries
with a few exceptions (such as Boost.Python). Use:
add_definitions(${Boost_LIB_DIAGNOSTIC_DEFINITIONS})
to ask Boost to report information about automatic linking requests.
Example to find Boost headers only:
find_package(Boost 1.36.0)
if(Boost_FOUND)
include_directories(${Boost_INCLUDE_DIRS})
add_executable(foo foo.cc)
endif()
Example to find Boost libraries and use imported targets:
find_package(Boost 1.56 REQUIRED COMPONENTS
date_time filesystem iostreams)
add_executable(foo foo.cc)
target_link_libraries(foo Boost::date_time Boost::filesystem
Boost::iostreams)
Example to find Boost headers and some static (release only) libraries:
set(Boost_USE_STATIC_LIBS ON) # only find static libs
set(Boost_USE_DEBUG_LIBS OFF) # ignore debug libs and
set(Boost_USE_RELEASE_LIBS ON) # only find release libs
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.36.0 COMPONENTS date_time filesystem system ...)
if(Boost_FOUND)
include_directories(${Boost_INCLUDE_DIRS})
add_executable(foo foo.cc)
target_link_libraries(foo ${Boost_LIBRARIES})
endif()
Boost CMake
If Boost was built using the boost-cmake project it provides a package configuration file
for use with find_package’s Config mode. This module looks for the package configuration
file called BoostConfig.cmake or boost-config.cmake and stores the result in cache entry
“Boost_DIR”. If found, the package configuration file is loaded and this module returns
with no further action. See documentation of the Boost CMake package configuration for
details on what it provides.
Set Boost_NO_BOOST_CMAKE to ON to disable the search for boost-cmake.
FindBullet
Try to find the Bullet physics engine
This module defines the following variables
BULLET_FOUND - Was bullet found
BULLET_INCLUDE_DIRS - the Bullet include directories
BULLET_LIBRARIES - Link to this, by default it includes
all bullet components (Dynamics,
Collision, LinearMath, & SoftBody)
This module accepts the following variables
BULLET_ROOT - Can be set to bullet install path or Windows build path
FindBZip2
Try to find BZip2
IMPORTED Targets
This module defines IMPORTED target BZip2::BZip2, if BZip2 has been found.
Result Variables
This module defines the following variables:
BZIP2_FOUND - system has BZip2
BZIP2_INCLUDE_DIR - the BZip2 include directory
BZIP2_LIBRARIES - Link these to use BZip2
BZIP2_NEED_PREFIX - this is set if the functions are prefixed with BZ2_
BZIP2_VERSION_STRING - the version of BZip2 found (since CMake 2.8.8)
FindCABLE
Find CABLE
This module finds if CABLE is installed and determines where the include files and
libraries are. This code sets the following variables:
CABLE the path to the cable executable
CABLE_TCL_LIBRARY the path to the Tcl wrapper library
CABLE_INCLUDE_DIR the path to the include directory
To build Tcl wrappers, you should add shared library and link it to ${CABLE_TCL_LIBRARY}.
You should also add ${CABLE_INCLUDE_DIR} as an include directory.
FindCoin3D
Find Coin3D (Open Inventor)
Coin3D is an implementation of the Open Inventor API. It provides data structures and
algorithms for 3D visualization.
This module defines the following variables
COIN3D_FOUND - system has Coin3D - Open Inventor
COIN3D_INCLUDE_DIRS - where the Inventor include directory can be found
COIN3D_LIBRARIES - Link to this to use Coin3D
FindCUDA
NOTE:
The FindCUDA module has been superseded by first-class support for the CUDA language in
CMake. It is no longer necessary to use this module or call find_package(CUDA). This
module now exists only for compatibility with projects that have not been ported.
Instead, list CUDA among the languages named in the top-level call to the project()
command, or call the enable_language() command with CUDA. Then one can add CUDA (.cu)
sources to programs directly in calls to add_library() and add_executable().
Tools for building CUDA C files: libraries and build dependencies.
This script locates the NVIDIA CUDA C tools. It should work on linux, windows, and mac
and should be reasonably up to date with CUDA C releases.
This script makes use of the standard find_package arguments of <VERSION>, REQUIRED and
QUIET. CUDA_FOUND will report if an acceptable version of CUDA was found.
The script will prompt the user to specify CUDA_TOOLKIT_ROOT_DIR if the prefix cannot be
determined by the location of nvcc in the system path and REQUIRED is specified to
find_package(). To use a different installed version of the toolkit set the environment
variable CUDA_BIN_PATH before running cmake (e.g. CUDA_BIN_PATH=/usr/local/cuda1.0
instead of the default /usr/local/cuda) or set CUDA_TOOLKIT_ROOT_DIR after configuring.
If you change the value of CUDA_TOOLKIT_ROOT_DIR, various components that depend on the
path will be relocated.
It might be necessary to set CUDA_TOOLKIT_ROOT_DIR manually on certain platforms, or to
use a cuda runtime not installed in the default location. In newer versions of the tool‐
kit the cuda library is included with the graphics driver- be sure that the driver version
matches what is needed by the cuda runtime version.
The following variables affect the behavior of the macros in the script (in alphebetical
order). Note that any of these flags can be changed multiple times in the same directory
before calling CUDA_ADD_EXECUTABLE, CUDA_ADD_LIBRARY, CUDA_COMPILE, CUDA_COMPILE_PTX,
CUDA_COMPILE_FATBIN, CUDA_COMPILE_CUBIN or CUDA_WRAP_SRCS:
CUDA_64_BIT_DEVICE_CODE (Default matches host bit size)
-- Set to ON to compile for 64 bit device code, OFF for 32 bit device code.
Note that making this different from the host code when generating object
or C files from CUDA code just won't work, because size_t gets defined by
nvcc in the generated source. If you compile to PTX and then load the
file yourself, you can mix bit sizes between device and host.
CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE (Default ON)
-- Set to ON if you want the custom build rule to be attached to the source
file in Visual Studio. Turn OFF if you add the same cuda file to multiple
targets.
This allows the user to build the target from the CUDA file; however, bad
things can happen if the CUDA source file is added to multiple targets.
When performing parallel builds it is possible for the custom build
command to be run more than once and in parallel causing cryptic build
errors. VS runs the rules for every source file in the target, and a
source can have only one rule no matter how many projects it is added to.
When the rule is run from multiple targets race conditions can occur on
the generated file. Eventually everything will get built, but if the user
is unaware of this behavior, there may be confusion. It would be nice if
this script could detect the reuse of source files across multiple targets
and turn the option off for the user, but no good solution could be found.
CUDA_BUILD_CUBIN (Default OFF)
-- Set to ON to enable and extra compilation pass with the -cubin option in
Device mode. The output is parsed and register, shared memory usage is
printed during build.
CUDA_BUILD_EMULATION (Default OFF for device mode)
-- Set to ON for Emulation mode. -D_DEVICEEMU is defined for CUDA C files
when CUDA_BUILD_EMULATION is TRUE.
CUDA_LINK_LIBRARIES_KEYWORD (Default "")
-- The <PRIVATE|PUBLIC|INTERFACE> keyword to use for internal
target_link_libraries calls. The default is to use no keyword which
uses the old "plain" form of target_link_libraries. Note that is matters
because whatever is used inside the FindCUDA module must also be used
outside - the two forms of target_link_libraries cannot be mixed.
CUDA_GENERATED_OUTPUT_DIR (Default CMAKE_CURRENT_BINARY_DIR)
-- Set to the path you wish to have the generated files placed. If it is
blank output files will be placed in CMAKE_CURRENT_BINARY_DIR.
Intermediate files will always be placed in
CMAKE_CURRENT_BINARY_DIR/CMakeFiles.
CUDA_HOST_COMPILATION_CPP (Default ON)
-- Set to OFF for C compilation of host code.
CUDA_HOST_COMPILER (Default CMAKE_C_COMPILER, $(VCInstallDir)/bin for VS)
-- Set the host compiler to be used by nvcc. Ignored if -ccbin or
--compiler-bindir is already present in the CUDA_NVCC_FLAGS or
CUDA_NVCC_FLAGS_<CONFIG> variables. For Visual Studio targets
$(VCInstallDir)/bin is a special value that expands out to the path when
the command is run from within VS.
CUDA_NVCC_FLAGS
CUDA_NVCC_FLAGS_<CONFIG>
-- Additional NVCC command line arguments. NOTE: multiple arguments must be
semi-colon delimited (e.g. --compiler-options;-Wall)
CUDA_PROPAGATE_HOST_FLAGS (Default ON)
-- Set to ON to propagate CMAKE_{C,CXX}_FLAGS and their configuration
dependent counterparts (e.g. CMAKE_C_FLAGS_DEBUG) automatically to the
host compiler through nvcc's -Xcompiler flag. This helps make the
generated host code match the rest of the system better. Sometimes
certain flags give nvcc problems, and this will help you turn the flag
propagation off. This does not affect the flags supplied directly to nvcc
via CUDA_NVCC_FLAGS or through the OPTION flags specified through
CUDA_ADD_LIBRARY, CUDA_ADD_EXECUTABLE, or CUDA_WRAP_SRCS. Flags used for
shared library compilation are not affected by this flag.
CUDA_SEPARABLE_COMPILATION (Default OFF)
-- If set this will enable separable compilation for all CUDA runtime object
files. If used outside of CUDA_ADD_EXECUTABLE and CUDA_ADD_LIBRARY
(e.g. calling CUDA_WRAP_SRCS directly),
CUDA_COMPUTE_SEPARABLE_COMPILATION_OBJECT_FILE_NAME and
CUDA_LINK_SEPARABLE_COMPILATION_OBJECTS should be called.
CUDA_SOURCE_PROPERTY_FORMAT
-- If this source file property is set, it can override the format specified
to CUDA_WRAP_SRCS (OBJ, PTX, CUBIN, or FATBIN). If an input source file
is not a .cu file, setting this file will cause it to be treated as a .cu
file. See documentation for set_source_files_properties on how to set
this property.
CUDA_USE_STATIC_CUDA_RUNTIME (Default ON)
-- When enabled the static version of the CUDA runtime library will be used
in CUDA_LIBRARIES. If the version of CUDA configured doesn't support
this option, then it will be silently disabled.
CUDA_VERBOSE_BUILD (Default OFF)
-- Set to ON to see all the commands used when building the CUDA file. When
using a Makefile generator the value defaults to VERBOSE (run make
VERBOSE=1 to see output), although setting CUDA_VERBOSE_BUILD to ON will
always print the output.
The script creates the following macros (in alphebetical order):
CUDA_ADD_CUFFT_TO_TARGET( cuda_target )
-- Adds the cufft library to the target (can be any target). Handles whether
you are in emulation mode or not.
CUDA_ADD_CUBLAS_TO_TARGET( cuda_target )
-- Adds the cublas library to the target (can be any target). Handles
whether you are in emulation mode or not.
CUDA_ADD_EXECUTABLE( cuda_target file0 file1 ...
[WIN32] [MACOSX_BUNDLE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
-- Creates an executable "cuda_target" which is made up of the files
specified. All of the non CUDA C files are compiled using the standard
build rules specified by CMAKE and the cuda files are compiled to object
files using nvcc and the host compiler. In addition CUDA_INCLUDE_DIRS is
added automatically to include_directories(). Some standard CMake target
calls can be used on the target after calling this macro
(e.g. set_target_properties and target_link_libraries), but setting
properties that adjust compilation flags will not affect code compiled by
nvcc. Such flags should be modified before calling CUDA_ADD_EXECUTABLE,
CUDA_ADD_LIBRARY or CUDA_WRAP_SRCS.
CUDA_ADD_LIBRARY( cuda_target file0 file1 ...
[STATIC | SHARED | MODULE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
-- Same as CUDA_ADD_EXECUTABLE except that a library is created.
CUDA_BUILD_CLEAN_TARGET()
-- Creates a convience target that deletes all the dependency files
generated. You should make clean after running this target to ensure the
dependency files get regenerated.
CUDA_COMPILE( generated_files file0 file1 ... [STATIC | SHARED | MODULE]
[OPTIONS ...] )
-- Returns a list of generated files from the input source files to be used
with ADD_LIBRARY or ADD_EXECUTABLE.
CUDA_COMPILE_PTX( generated_files file0 file1 ... [OPTIONS ...] )
-- Returns a list of PTX files generated from the input source files.
CUDA_COMPILE_FATBIN( generated_files file0 file1 ... [OPTIONS ...] )
-- Returns a list of FATBIN files generated from the input source files.
CUDA_COMPILE_CUBIN( generated_files file0 file1 ... [OPTIONS ...] )
-- Returns a list of CUBIN files generated from the input source files.
CUDA_COMPUTE_SEPARABLE_COMPILATION_OBJECT_FILE_NAME( output_file_var
cuda_target
object_files )
-- Compute the name of the intermediate link file used for separable
compilation. This file name is typically passed into
CUDA_LINK_SEPARABLE_COMPILATION_OBJECTS. output_file_var is produced
based on cuda_target the list of objects files that need separable
compilation as specified by object_files. If the object_files list is
empty, then output_file_var will be empty. This function is called
automatically for CUDA_ADD_LIBRARY and CUDA_ADD_EXECUTABLE. Note that
this is a function and not a macro.
CUDA_INCLUDE_DIRECTORIES( path0 path1 ... )
-- Sets the directories that should be passed to nvcc
(e.g. nvcc -Ipath0 -Ipath1 ... ). These paths usually contain other .cu
files.
CUDA_LINK_SEPARABLE_COMPILATION_OBJECTS( output_file_var cuda_target
nvcc_flags object_files)
-- Generates the link object required by separable compilation from the given
object files. This is called automatically for CUDA_ADD_EXECUTABLE and
CUDA_ADD_LIBRARY, but can be called manually when using CUDA_WRAP_SRCS
directly. When called from CUDA_ADD_LIBRARY or CUDA_ADD_EXECUTABLE the
nvcc_flags passed in are the same as the flags passed in via the OPTIONS
argument. The only nvcc flag added automatically is the bitness flag as
specified by CUDA_64_BIT_DEVICE_CODE. Note that this is a function
instead of a macro.
CUDA_SELECT_NVCC_ARCH_FLAGS(out_variable [target_CUDA_architectures])
-- Selects GPU arch flags for nvcc based on target_CUDA_architectures
target_CUDA_architectures : Auto | Common | All | LIST(ARCH_AND_PTX ...)
- "Auto" detects local machine GPU compute arch at runtime.
- "Common" and "All" cover common and entire subsets of architectures
ARCH_AND_PTX : NAME | NUM.NUM | NUM.NUM(NUM.NUM) | NUM.NUM+PTX
NAME: Fermi Kepler Maxwell Kepler+Tegra Kepler+Tesla Maxwell+Tegra Pascal
NUM: Any number. Only those pairs are currently accepted by NVCC though:
2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.2
Returns LIST of flags to be added to CUDA_NVCC_FLAGS in ${out_variable}
Additionally, sets ${out_variable}_readable to the resulting numeric list
Example:
CUDA_SELECT_NVCC_ARCH_FLAGS(ARCH_FLAGS 3.0 3.5+PTX 5.2(5.0) Maxwell)
LIST(APPEND CUDA_NVCC_FLAGS ${ARCH_FLAGS})
More info on CUDA architectures: https://en.wikipedia.org/wiki/CUDA
Note that this is a function instead of a macro.
CUDA_WRAP_SRCS ( cuda_target format generated_files file0 file1 ...
[STATIC | SHARED | MODULE] [OPTIONS ...] )
-- This is where all the magic happens. CUDA_ADD_EXECUTABLE,
CUDA_ADD_LIBRARY, CUDA_COMPILE, and CUDA_COMPILE_PTX all call this
function under the hood.
Given the list of files (file0 file1 ... fileN) this macro generates
custom commands that generate either PTX or linkable objects (use "PTX" or
"OBJ" for the format argument to switch). Files that don't end with .cu
or have the HEADER_FILE_ONLY property are ignored.
The arguments passed in after OPTIONS are extra command line options to
give to nvcc. You can also specify per configuration options by
specifying the name of the configuration followed by the options. General
options must precede configuration specific options. Not all
configurations need to be specified, only the ones provided will be used.
OPTIONS -DFLAG=2 "-DFLAG_OTHER=space in flag"
DEBUG -g
RELEASE --use_fast_math
RELWITHDEBINFO --use_fast_math;-g
MINSIZEREL --use_fast_math
For certain configurations (namely VS generating object files with
CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE set to ON), no generated file will
be produced for the given cuda file. This is because when you add the
cuda file to Visual Studio it knows that this file produces an object file
and will link in the resulting object file automatically.
This script will also generate a separate cmake script that is used at
build time to invoke nvcc. This is for several reasons.
1. nvcc can return negative numbers as return values which confuses
Visual Studio into thinking that the command succeeded. The script now
checks the error codes and produces errors when there was a problem.
2. nvcc has been known to not delete incomplete results when it
encounters problems. This confuses build systems into thinking the
target was generated when in fact an unusable file exists. The script
now deletes the output files if there was an error.
3. By putting all the options that affect the build into a file and then
make the build rule dependent on the file, the output files will be
regenerated when the options change.
This script also looks at optional arguments STATIC, SHARED, or MODULE to
determine when to target the object compilation for a shared library.
BUILD_SHARED_LIBS is ignored in CUDA_WRAP_SRCS, but it is respected in
CUDA_ADD_LIBRARY. On some systems special flags are added for building
objects intended for shared libraries. A preprocessor macro,
<target_name>_EXPORTS is defined when a shared library compilation is
detected.
Flags passed into add_definitions with -D or /D are passed along to nvcc.
The script defines the following variables:
CUDA_VERSION_MAJOR -- The major version of cuda as reported by nvcc.
CUDA_VERSION_MINOR -- The minor version.
CUDA_VERSION
CUDA_VERSION_STRING -- CUDA_VERSION_MAJOR.CUDA_VERSION_MINOR
CUDA_HAS_FP16 -- Whether a short float (float16,fp16) is supported.
CUDA_TOOLKIT_ROOT_DIR -- Path to the CUDA Toolkit (defined if not set).
CUDA_SDK_ROOT_DIR -- Path to the CUDA SDK. Use this to find files in the
SDK. This script will not directly support finding
specific libraries or headers, as that isn't
supported by NVIDIA. If you want to change
libraries when the path changes see the
FindCUDA.cmake script for an example of how to clear
these variables. There are also examples of how to
use the CUDA_SDK_ROOT_DIR to locate headers or
libraries, if you so choose (at your own risk).
CUDA_INCLUDE_DIRS -- Include directory for cuda headers. Added automatically
for CUDA_ADD_EXECUTABLE and CUDA_ADD_LIBRARY.
CUDA_LIBRARIES -- Cuda RT library.
CUDA_CUFFT_LIBRARIES -- Device or emulation library for the Cuda FFT
implementation (alternative to:
CUDA_ADD_CUFFT_TO_TARGET macro)
CUDA_CUBLAS_LIBRARIES -- Device or emulation library for the Cuda BLAS
implementation (alternative to:
CUDA_ADD_CUBLAS_TO_TARGET macro).
CUDA_cudart_static_LIBRARY -- Statically linkable cuda runtime library.
Only available for CUDA version 5.5+
CUDA_cudadevrt_LIBRARY -- Device runtime library.
Required for separable compilation.
CUDA_cupti_LIBRARY -- CUDA Profiling Tools Interface library.
Only available for CUDA version 4.0+.
CUDA_curand_LIBRARY -- CUDA Random Number Generation library.
Only available for CUDA version 3.2+.
CUDA_cusolver_LIBRARY -- CUDA Direct Solver library.
Only available for CUDA version 7.0+.
CUDA_cusparse_LIBRARY -- CUDA Sparse Matrix library.
Only available for CUDA version 3.2+.
CUDA_npp_LIBRARY -- NVIDIA Performance Primitives lib.
Only available for CUDA version 4.0+.
CUDA_nppc_LIBRARY -- NVIDIA Performance Primitives lib (core).
Only available for CUDA version 5.5+.
CUDA_nppi_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 5.5 - 8.0.
CUDA_nppial_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppicc_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppicom_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppidei_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppif_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppig_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppim_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppist_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppisu_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_nppitc_LIBRARY -- NVIDIA Performance Primitives lib (image processing).
Only available for CUDA version 9.0.
CUDA_npps_LIBRARY -- NVIDIA Performance Primitives lib (signal processing).
Only available for CUDA version 5.5+.
CUDA_nvcuvenc_LIBRARY -- CUDA Video Encoder library.
Only available for CUDA version 3.2+.
Windows only.
CUDA_nvcuvid_LIBRARY -- CUDA Video Decoder library.
Only available for CUDA version 3.2+.
Windows only.
FindCups
Try to find the Cups printing system
Once done this will define
CUPS_FOUND - system has Cups
CUPS_INCLUDE_DIR - the Cups include directory
CUPS_LIBRARIES - Libraries needed to use Cups
CUPS_VERSION_STRING - version of Cups found (since CMake 2.8.8)
Set CUPS_REQUIRE_IPP_DELETE_ATTRIBUTE to TRUE if you need a version which
features this function (i.e. at least 1.1.19)
FindCURL
Find curl
Find the native CURL headers and libraries.
CURL_INCLUDE_DIRS - where to find curl/curl.h, etc.
CURL_LIBRARIES - List of libraries when using curl.
CURL_FOUND - True if curl found.
CURL_VERSION_STRING - the version of curl found (since CMake 2.8.8)
FindCurses
Find the curses or ncurses include file and library.
Result Variables
This module defines the following variables:
CURSES_FOUND
True if Curses is found.
CURSES_INCLUDE_DIRS
The include directories needed to use Curses.
CURSES_LIBRARIES
The libraries needed to use Curses.
CURSES_HAVE_CURSES_H
True if curses.h is available.
CURSES_HAVE_NCURSES_H
True if ncurses.h is available.
CURSES_HAVE_NCURSES_NCURSES_H
True if ncurses/ncurses.h is available.
CURSES_HAVE_NCURSES_CURSES_H
True if ncurses/curses.h is available.
Set CURSES_NEED_NCURSES to TRUE before the find_package(Curses) call if NCurses function‐
ality is required. Set CURSES_NEED_WIDE to TRUE before the find_package(Curses) call if
unicode functionality is required.
Backward Compatibility
The following variable are provided for backward compatibility:
CURSES_INCLUDE_DIR
Path to Curses include. Use CURSES_INCLUDE_DIRS instead.
CURSES_LIBRARY
Path to Curses library. Use CURSES_LIBRARIES instead.
FindCVS
The module defines the following variables:
CVS_EXECUTABLE - path to cvs command line client
CVS_FOUND - true if the command line client was found
Example usage:
find_package(CVS)
if(CVS_FOUND)
message("CVS found: ${CVS_EXECUTABLE}")
endif()
FindCxxTest
Find CxxTest
Find the CxxTest suite and declare a helper macro for creating unit tests and integrating
them with CTest. For more details on CxxTest see http://cxxtest.tigris.org
INPUT Variables
CXXTEST_USE_PYTHON [deprecated since 1.3]
Only used in the case both Python & Perl
are detected on the system to control
which CxxTest code generator is used.
Valid only for CxxTest version 3.
NOTE: In older versions of this Find Module,
this variable controlled if the Python test
generator was used instead of the Perl one,
regardless of which scripting language the
user had installed.
CXXTEST_TESTGEN_ARGS (since CMake 2.8.3)
Specify a list of options to pass to the CxxTest code
generator. If not defined, --error-printer is
passed.
OUTPUT Variables
CXXTEST_FOUND
True if the CxxTest framework was found
CXXTEST_INCLUDE_DIRS
Where to find the CxxTest include directory
CXXTEST_PERL_TESTGEN_EXECUTABLE
The perl-based test generator
CXXTEST_PYTHON_TESTGEN_EXECUTABLE
The python-based test generator
CXXTEST_TESTGEN_EXECUTABLE (since CMake 2.8.3)
The test generator that is actually used (chosen using user preferences
and interpreters found in the system)
CXXTEST_TESTGEN_INTERPRETER (since CMake 2.8.3)
The full path to the Perl or Python executable on the system, on
platforms where the script cannot be executed using its shebang line.
MACROS for optional use by CMake users:
CXXTEST_ADD_TEST(<test_name> <gen_source_file> <input_files_to_testgen...>)
Creates a CxxTest runner and adds it to the CTest testing suite
Parameters:
test_name The name of the test
gen_source_file The generated source filename to be
generated by CxxTest
input_files_to_testgen The list of header files containing the
CxxTest::TestSuite's to be included in
this runner
#==============
Example Usage:
find_package(CxxTest)
if(CXXTEST_FOUND)
include_directories(${CXXTEST_INCLUDE_DIR})
enable_testing()
CXXTEST_ADD_TEST(unittest_foo foo_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/foo_test.h)
target_link_libraries(unittest_foo foo) # as needed
endif()
This will (if CxxTest is found):
1. Invoke the testgen executable to autogenerate foo_test.cc in the
binary tree from "foo_test.h" in the current source directory.
2. Create an executable and test called unittest_foo.
#=============
Example foo_test.h:
#include <cxxtest/TestSuite.h>
class MyTestSuite : public CxxTest::TestSuite
{
public:
void testAddition( void )
{
TS_ASSERT( 1 + 1 > 1 );
TS_ASSERT_EQUALS( 1 + 1, 2 );
}
};
FindCygwin
this module looks for Cygwin
FindDart
Find DART
This module looks for the dart testing software and sets DART_ROOT to point to where it
found it.
FindDCMTK
Find DCMTK libraries and applications
The module defines the following variables:
DCMTK_INCLUDE_DIRS - Directories to include to use DCMTK
DCMTK_LIBRARIES - Files to link against to use DCMTK
DCMTK_FOUND - If false, don't try to use DCMTK
DCMTK_DIR - (optional) Source directory for DCMTK
Compatibility
This module is able to find a version of DCMTK that does or does not export a DCMTKCon‐
fig.cmake file. It applies a two step process:
· Step 1: Attempt to find DCMTK version providing a DCMTKConfig.cmake file.
· Step 2: If step 1 failed, rely on FindDCMTK.cmake to set DCMTK_* variables details
below.
Recent DCMTK provides a DCMTKConfig.cmake package configuration file. To exclusively use
the package configuration file (recommended when possible), pass the NO_MODULE option to
find_package(). For example, find_package(DCMTK NO_MODULE). This requires official DCMTK
snapshot 3.6.1_20140617 or newer.
Until all clients update to the more recent DCMTK, build systems will need to support dif‐
ferent versions of DCMTK.
On any given system, the following combinations of DCMTK versions could be considered:
┌───────┬─────────────────┬─────────────────┬─────────────┐
│ │ SYSTEM DCMTK │ LOCAL DCMTK │ Supported ? │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case A │ NA │ [ ] DCMTKConfig │ YES │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case B │ NA │ [X] DCMTKConfig │ YES │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case C │ [ ] DCMTKConfig │ NA │ YES │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case D │ [X] DCMTKConfig │ NA │ YES │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case E │ [ ] DCMTKConfig │ [ ] DCMTKConfig │ YES (*) │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case F │ [X] DCMTKConfig │ [ ] DCMTKConfig │ NO │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case G │ [ ] DCMTKConfig │ [X] DCMTKConfig │ YES │
├───────┼─────────────────┼─────────────────┼─────────────┤
│Case H │ [X] DCMTKConfig │ [X] DCMTKConfig │ YES │
└───────┴─────────────────┴─────────────────┴─────────────┘
(*) See Troubleshooting section.
Legend:
NA ……………: Means that no System or Local DCMTK is available
[ ] DCMTKConfig ..: Means that the version of DCMTK does NOT export a DCMTKConfig.cmake
file.
[X] DCMTKConfig ..: Means that the version of DCMTK exports a DCMTKConfig.cmake file.
Troubleshooting
What to do if my project finds a different version of DCMTK?
Remove DCMTK entry from the CMake cache per find_package() documentation.
FindDevIL
This module locates the developer’s image library. http://openil.sourceforge.net/
This module sets:
IL_LIBRARIES - the name of the IL library. These include the full path to
the core DevIL library. This one has to be linked into the
application.
ILU_LIBRARIES - the name of the ILU library. Again, the full path. This
library is for filters and effects, not actual loading. It
doesn't have to be linked if the functionality it provides
is not used.
ILUT_LIBRARIES - the name of the ILUT library. Full path. This part of the
library interfaces with OpenGL. It is not strictly needed
in applications.
IL_INCLUDE_DIR - where to find the il.h, ilu.h and ilut.h files.
DevIL_FOUND - this is set to TRUE if all the above variables were set.
This will be set to false if ILU or ILUT are not found,
even if they are not needed. In most systems, if one
library is found all the others are as well. That's the
way the DevIL developers release it.
FindDoxygen
Doxygen is a documentation generation tool (see http://www.doxygen.org). This module
looks for Doxygen and some optional tools it supports. These tools are enabled as compo‐
nents in the find_package() command:
dot Graphviz dot utility used to render various graphs.
mscgen Message Chart Generator utility used by Doxygen’s \msc and \mscfile commands.
dia Dia the diagram editor used by Doxygen’s \diafile command.
Examples:
# Require dot, treat the other components as optional
find_package(Doxygen
REQUIRED dot
OPTIONAL_COMPONENTS mscgen dia)
The following variables are defined by this module:
DOXYGEN_FOUND
True if the doxygen executable was found.
DOXYGEN_VERSION
The version reported by doxygen --version.
The module defines IMPORTED targets for Doxygen and each component found. These can be
used as part of custom commands, etc. and should be preferred over old-style (and now dep‐
recated) variables like DOXYGEN_EXECUTABLE. The following import targets are defined if
their corresponding executable could be found (the component import targets will only be
defined if that component was requested):
Doxygen::doxygen
Doxygen::dot
Doxygen::mscgen
Doxygen::dia
Functions
doxygen_add_docs
This function is intended as a convenience for adding a target for generating docu‐
mentation with Doxygen. It aims to provide sensible defaults so that projects can
generally just provide the input files and directories and that will be sufficient
to give sensible results. The function supports the ability to customize the Doxy‐
gen configuration used to build the documentation.
doxygen_add_docs(targetName
[filesOrDirs...]
[WORKING_DIRECTORY dir]
[COMMENT comment])
The function constructs a Doxyfile and defines a custom target that runs Doxygen on
that generated file. The listed files and directories are used as the INPUT of the
generated Doxyfile and they can contain wildcards. Any files that are listed
explicitly will also be added as SOURCES of the custom target so they will show up
in an IDE project’s source list.
So that relative input paths work as expected, by default the working directory of
the Doxygen command will be the current source directory (i.e. CMAKE_CUR‐
RENT_SOURCE_DIR). This can be overridden with the WORKING_DIRECTORY option to
change the directory used as the relative base point. Note also that Doxygen’s
default behavior is to strip the working directory from relative paths in the gen‐
erated documentation (see the STRIP_FROM_PATH Doxygen config option for details).
If provided, the optional comment will be passed as the COMMENT for the add_cus‐
tom_target() command used to create the custom target internally.
The contents of the generated Doxyfile can be customized by setting CMake variables
before calling doxygen_add_docs(). Any variable with a name of the form DOXY‐
GEN_<tag> will have its value substituted for the corresponding <tag> configuration
option in the Doxyfile. See the Doxygen documentation for the full list of sup‐
ported configuration options.
Some of Doxygen’s defaults are overridden to provide more appropriate behavior for
a CMake project. Each of the following will be explicitly set unless the variable
already has a value before doxygen_add_docs() is called (with some exceptions
noted):
DOXYGEN_HAVE_DOT
Set to YES if the dot component was requested and it was found, NO other‐
wise. Any existing value of DOXYGEN_HAVE_DOT is ignored.
DOXYGEN_DOT_MULTI_TARGETS
Set to YES by this module (note that this requires a dot version newer than
1.8.10). This option is only meaningful if DOXYGEN_HAVE_DOT is also set to
YES.
DOXYGEN_GENERATE_LATEX
Set to NO by this module.
DOXYGEN_WARN_FORMAT
For Visual Studio based generators, this is set to the form recognized by
the Visual Studio IDE: $file($line) : $text. For all other generators, Doxy‐
gen’s default value is not overridden.
DOXYGEN_PROJECT_NAME
Populated with the name of the current project (i.e. PROJECT_NAME).
DOXYGEN_PROJECT_NUMBER
Populated with the version of the current project (i.e. PROJECT_VERSION).
DOXYGEN_PROJECT_BRIEF
Populated with the description of the current project (i.e.
PROJECT_DESCRIPTION).
DOXYGEN_INPUT
Projects should not set this variable. It will be populated with the set of
files and directories passed to doxygen_add_docs(), thereby providing con‐
sistent behavior with the other built-in commands like add_executable(),
add_library() and add_custom_target(). If a variable named DOXYGEN_INPUT is
set by the project, it will be ignored and a warning will be issued.
DOXYGEN_RECURSIVE
Set to YES by this module.
DOXYGEN_EXCLUDE_PATTERNS
If the set of inputs includes directories, this variable will specify pat‐
terns used to exclude files from them. The following patterns are added by
doxygen_add_docs() to ensure CMake-specific files and directories are not
included in the input. If the project sets DOXYGEN_EXCLUDE_PATTERNS, those
contents are merged with these additional patterns rather than replacing
them:
*/.git/*
*/.svn/*
*/.hg/*
*/CMakeFiles/*
*/_CPack_Packages/*
DartConfiguration.tcl
CMakeLists.txt
CMakeCache.txt
DOXYGEN_OUTPUT_DIRECTORY
Set to CMAKE_CURRENT_BINARY_DIR by this module. Note that if the project
provides its own value for this and it is a relative path, it will be con‐
verted to an absolute path relative to the current binary directory. This is
necessary because doxygen will normally be run from a directory within the
source tree so that relative source paths work as expected. If this direc‐
tory does not exist, it will be recursively created prior to executing the
doxygen commands.
To change any of these defaults or override any other Doxygen config option, set relevant
variables before calling doxygen_add_docs(). For example:
set(DOXYGEN_GENERATE_HTML NO)
set(DOXYGEN_GENERATE_MAN YES)
doxygen_add_docs(
doxygen
${PROJECT_SOURCE_DIR}
COMMENT "Generate man pages"
)
A number of Doxygen config options accept lists of values, but Doxygen requires them to be
separated by whitespace. CMake variables hold lists as a string with items separated by
semi-colons, so a conversion needs to be performed. The doxygen_add_docs() command specif‐
ically checks the following Doxygen config options and will convert their associated CMake
variable’s contents into the required form if set.
ABBREVIATE_BRIEF
ALIASES
CITE_BIB_FILES
DIAFILE_DIRS
DOTFILE_DIRS
DOT_FONTPATH
ENABLED_SECTIONS
EXAMPLE_PATH
EXAMPLE_PATTERNS
EXCLUDE
EXCLUDE_PATTERNS
EXCLUDE_SYMBOLS
EXPAND_AS_DEFINED
EXTENSION_MAPPING
EXTRA_PACKAGES
EXTRA_SEARCH_MAPPINGS
FILE_PATTERNS
FILTER_PATTERNS
FILTER_SOURCE_PATTERNS
HTML_EXTRA_FILES
HTML_EXTRA_STYLESHEET
IGNORE_PREFIX
IMAGE_PATH
INCLUDE_FILE_PATTERNS
INCLUDE_PATH
INPUT
LATEX_EXTRA_FILES
LATEX_EXTRA_STYLESHEET
MATHJAX_EXTENSIONS
MSCFILE_DIRS
PLANTUML_INCLUDE_PATH
PREDEFINED
QHP_CUST_FILTER_ATTRS
QHP_SECT_FILTER_ATTRS
STRIP_FROM_INC_PATH
STRIP_FROM_PATH
TAGFILES
TCL_SUBST
The following single value Doxygen options would be quoted automatically if they contain
at least one space:
CHM_FILE
DIA_PATH
DOCBOOK_OUTPUT
DOCSET_FEEDNAME
DOCSET_PUBLISHER_NAME
DOT_FONTNAME
DOT_PATH
EXTERNAL_SEARCH_ID
FILE_VERSION_FILTER
GENERATE_TAGFILE
HHC_LOCATION
HTML_FOOTER
HTML_HEADER
HTML_OUTPUT
HTML_STYLESHEET
INPUT_FILTER
LATEX_FOOTER
LATEX_HEADER
LATEX_OUTPUT
LAYOUT_FILE
MAN_OUTPUT
MAN_SUBDIR
MATHJAX_CODEFILE
MSCGEN_PATH
OUTPUT_DIRECTORY
PERL_PATH
PLANTUML_JAR_PATH
PROJECT_BRIEF
PROJECT_LOGO
PROJECT_NAME
QCH_FILE
QHG_LOCATION
QHP_CUST_FILTER_NAME
QHP_VIRTUAL_FOLDER
RTF_EXTENSIONS_FILE
RTF_OUTPUT
RTF_STYLESHEET_FILE
SEARCHDATA_FILE
USE_MDFILE_AS_MAINPAGE
WARN_FORMAT
WARN_LOGFILE
XML_OUTPUT
Deprecated Result Variables
For compatibility with previous versions of CMake, the following variables are also
defined but they are deprecated and should no longer be used:
DOXYGEN_EXECUTABLE
The path to the doxygen command. If projects need to refer to the doxygen exe‐
cutable directly, they should use the Doxygen::doxygen import target instead.
DOXYGEN_DOT_FOUND
True if the dot executable was found.
DOXYGEN_DOT_EXECUTABLE
The path to the dot command. If projects need to refer to the dot executable
directly, they should use the Doxygen::dot import target instead.
DOXYGEN_DOT_PATH
The path to the directory containing the dot executable as reported in DOXY‐
GEN_DOT_EXECUTABLE. The path may have forward slashes even on Windows and is not
suitable for direct substitution into a Doxyfile.in template. If you need this
value, get the IMPORTED_LOCATION property of the Doxygen::dot target and use
get_filename_component() to extract the directory part of that path. You may also
want to consider using file(TO_NATIVE_PATH) to prepare the path for a Doxygen con‐
figuration file.
Deprecated Hint Variables
DOXYGEN_SKIP_DOT
This variable has no any effect for component form of find_package. In backward
compatibility mode (i.e. without components list) it prevents the finder module
from searching for Graphviz’s dot utility.
FindEXPAT
Find the native Expat headers and library.
Imported Targets
This module defines the following IMPORTED targets:
EXPAT::EXPAT
The Expat expat library, if found.
Result Variables
This module will set the following variables in your project:
EXPAT_INCLUDE_DIRS
where to find expat.h, etc.
EXPAT_LIBRARIES
the libraries to link against to use Expat.
EXPAT_FOUND
true if the Expat headers and libraries were found.
FindFLEX
Find flex executable and provides a macro to generate custom build rules
The module defines the following variables:
FLEX_FOUND - true is flex executable is found
FLEX_EXECUTABLE - the path to the flex executable
FLEX_VERSION - the version of flex
FLEX_LIBRARIES - The flex libraries
FLEX_INCLUDE_DIRS - The path to the flex headers
The minimum required version of flex can be specified using the standard syntax, e.g.
find_package(FLEX 2.5.13)
If flex is found on the system, the module provides the macro:
FLEX_TARGET(Name FlexInput FlexOutput
[COMPILE_FLAGS <string>]
[DEFINES_FILE <string>]
)
which creates a custom command to generate the <FlexOutput> file from the <FlexInput>
file. If COMPILE_FLAGS option is specified, the next parameter is added to the flex com‐
mand line. If flex is configured to output a header file, the DEFINES_FILE option may be
used to specify its name. Name is an alias used to get details of this custom command.
Indeed the macro defines the following variables:
FLEX_${Name}_DEFINED - true is the macro ran successfully
FLEX_${Name}_OUTPUTS - the source file generated by the custom rule, an
alias for FlexOutput
FLEX_${Name}_INPUT - the flex source file, an alias for ${FlexInput}
FLEX_${Name}_OUTPUT_HEADER - the header flex output, if any.
Flex scanners oftenly use tokens defined by Bison: the code generated by Flex depends of
the header generated by Bison. This module also defines a macro:
ADD_FLEX_BISON_DEPENDENCY(FlexTarget BisonTarget)
which adds the required dependency between a scanner and a parser where <FlexTarget> and
<BisonTarget> are the first parameters of respectively FLEX_TARGET and BISON_TARGET
macros.
====================================================================
Example:
find_package(BISON)
find_package(FLEX)
BISON_TARGET(MyParser parser.y ${CMAKE_CURRENT_BINARY_DIR}/parser.cpp)
FLEX_TARGET(MyScanner lexer.l ${CMAKE_CURRENT_BINARY_DIR}/lexer.cpp)
ADD_FLEX_BISON_DEPENDENCY(MyScanner MyParser)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
add_executable(Foo
Foo.cc
${BISON_MyParser_OUTPUTS}
${FLEX_MyScanner_OUTPUTS}
)
====================================================================
FindFLTK2
Find the native FLTK2 includes and library
The following settings are defined
FLTK2_FLUID_EXECUTABLE, where to find the Fluid tool
FLTK2_WRAP_UI, This enables the FLTK2_WRAP_UI command
FLTK2_INCLUDE_DIR, where to find include files
FLTK2_LIBRARIES, list of fltk2 libraries
FLTK2_FOUND, Don't use FLTK2 if false.
The following settings should not be used in general.
FLTK2_BASE_LIBRARY = the full path to fltk2.lib
FLTK2_GL_LIBRARY = the full path to fltk2_gl.lib
FLTK2_IMAGES_LIBRARY = the full path to fltk2_images.lib
FindFLTK
Find the native FLTK includes and library
By default FindFLTK.cmake will search for all of the FLTK components and add them to the
FLTK_LIBRARIES variable.
You can limit the components which get placed in FLTK_LIBRARIES by
defining one or more of the following three options:
FLTK_SKIP_OPENGL, set to true to disable searching for opengl and
the FLTK GL library
FLTK_SKIP_FORMS, set to true to disable searching for fltk_forms
FLTK_SKIP_IMAGES, set to true to disable searching for fltk_images
FLTK_SKIP_FLUID, set to true if the fluid binary need not be present
at build time
The following variables will be defined:
FLTK_FOUND, True if all components not skipped were found
FLTK_INCLUDE_DIR, where to find include files
FLTK_LIBRARIES, list of fltk libraries you should link against
FLTK_FLUID_EXECUTABLE, where to find the Fluid tool
FLTK_WRAP_UI, This enables the FLTK_WRAP_UI command
The following cache variables are assigned but should not be used. See the FLTK_LIBRARIES
variable instead.
FLTK_BASE_LIBRARY = the full path to fltk.lib
FLTK_GL_LIBRARY = the full path to fltk_gl.lib
FLTK_FORMS_LIBRARY = the full path to fltk_forms.lib
FLTK_IMAGES_LIBRARY = the full path to fltk_images.lib
FindFreetype
Find the FreeType font renderer includes and library.
Imported Targets
This module defines the following IMPORTED target:
Freetype::Freetype
The Freetype freetype library, if found
Result Variables
This module will set the following variables in your project:
FREETYPE_FOUND
true if the Freetype headers and libraries were found
FREETYPE_INCLUDE_DIRS
directories containing the Freetype headers. This is the concatenation of the vari‐
ables:
FREETYPE_INCLUDE_DIR_ft2build
directory holding the main Freetype API configuration header
FREETYPE_INCLUDE_DIR_freetype2
directory holding Freetype public headers
FREETYPE_LIBRARIES
the library to link against
FREETYPE_VERSION_STRING
the version of freetype found (since CMake 2.8.8)
Hints
The user may set the environment variable FREETYPE_DIR to the root directory of a Freetype
installation.
FindGCCXML
Find the GCC-XML front-end executable.
This module will define the following variables:
GCCXML - the GCC-XML front-end executable.
FindGDAL
Locate gdal
This module accepts the following environment variables:
GDAL_DIR or GDAL_ROOT - Specify the location of GDAL
This module defines the following CMake variables:
GDAL_FOUND - True if libgdal is found
GDAL_LIBRARY - A variable pointing to the GDAL library
GDAL_INCLUDE_DIR - Where to find the headers
FindGettext
Find GNU gettext tools
This module looks for the GNU gettext tools. This module defines the following values:
GETTEXT_MSGMERGE_EXECUTABLE: the full path to the msgmerge tool.
GETTEXT_MSGFMT_EXECUTABLE: the full path to the msgfmt tool.
GETTEXT_FOUND: True if gettext has been found.
GETTEXT_VERSION_STRING: the version of gettext found (since CMake 2.8.8)
Additionally it provides the following macros:
GETTEXT_CREATE_TRANSLATIONS ( outputFile [ALL] file1 … fileN )
This will create a target "translations" which will convert the
given input po files into the binary output mo file. If the
ALL option is used, the translations will also be created when
building the default target.
GETTEXT_PROCESS_POT_FILE( <potfile> [ALL] [INSTALL_DESTINATION <destdir>] LANGUAGES
<lang1> <lang2> … )
Process the given pot file to mo files.
If INSTALL_DESTINATION is given then automatically install rules will
be created, the language subdirectory will be taken into account
(by default use share/locale/).
If ALL is specified, the pot file is processed when building the all traget.
It creates a custom target "potfile".
GETTEXT_PROCESS_PO_FILES( <lang> [ALL] [INSTALL_DESTINATION <dir>] PO_FILES <po1> <po2> …
)
Process the given po files to mo files for the given language.
If INSTALL_DESTINATION is given then automatically install rules will
be created, the language subdirectory will be taken into account
(by default use share/locale/).
If ALL is specified, the po files are processed when building the all traget.
It creates a custom target "pofiles".
NOTE:
If you wish to use the Gettext library (libintl), use FindIntl.
FindGIF
This finds the GIF library (giflib)
The module defines the following variables:
GIF_FOUND
True if giflib was found
GIF_LIBRARIES
Libraries to link to in order to use giflib
GIF_INCLUDE_DIR
where to find the headers
GIF_VERSION
3, 4 or a full version string (eg 5.1.4) for versions >= 4.1.6
The minimum required version of giflib can be specified using the standard syntax, e.g.
find_package(GIF 4)
$GIF_DIR is an environment variable that would correspond to the
FindGit
The module defines the following variables:
GIT_EXECUTABLE
Path to Git command-line client.
Git_FOUND, GIT_FOUND
True if the Git command-line client was found.
GIT_VERSION_STRING
The version of Git found.
Example usage:
find_package(Git)
if(Git_FOUND)
message("Git found: ${GIT_EXECUTABLE}")
endif()
FindGLEW
Find the OpenGL Extension Wrangler Library (GLEW)
IMPORTED Targets
This module defines the IMPORTED target GLEW::GLEW, if GLEW has been found.
Result Variables
This module defines the following variables:
GLEW_INCLUDE_DIRS - include directories for GLEW
GLEW_LIBRARIES - libraries to link against GLEW
GLEW_FOUND - true if GLEW has been found and can be used
FindGLUT
try to find glut library and include files.
IMPORTED Targets
This module defines the IMPORTED targets:
GLUT::GLUT
Defined if the system has GLUT.
Result Variables
This module sets the following variables:
GLUT_INCLUDE_DIR, where to find GL/glut.h, etc.
GLUT_LIBRARIES, the libraries to link against
GLUT_FOUND, If false, do not try to use GLUT.
Also defined, but not for general use are:
GLUT_glut_LIBRARY = the full path to the glut library.
GLUT_Xmu_LIBRARY = the full path to the Xmu library.
GLUT_Xi_LIBRARY = the full path to the Xi Library.
FindGnuplot
this module looks for gnuplot
Once done this will define
GNUPLOT_FOUND - system has Gnuplot
GNUPLOT_EXECUTABLE - the Gnuplot executable
GNUPLOT_VERSION_STRING - the version of Gnuplot found (since CMake 2.8.8)
GNUPLOT_VERSION_STRING will not work for old versions like 3.7.1.
FindGnuTLS
Try to find the GNU Transport Layer Security library (gnutls)
Once done this will define
GNUTLS_FOUND - System has gnutls
GNUTLS_INCLUDE_DIR - The gnutls include directory
GNUTLS_LIBRARIES - The libraries needed to use gnutls
GNUTLS_DEFINITIONS - Compiler switches required for using gnutls
FindGSL
Find the native GSL includes and libraries.
The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is
free software under the GNU General Public License.
Imported Targets
If GSL is found, this module defines the following IMPORTED targets:
GSL::gsl - The main GSL library.
GSL::gslcblas - The CBLAS support library used by GSL.
Result Variables
This module will set the following variables in your project:
GSL_FOUND - True if GSL found on the local system
GSL_INCLUDE_DIRS - Location of GSL header files.
GSL_LIBRARIES - The GSL libraries.
GSL_VERSION - The version of the discovered GSL install.
Hints
Set GSL_ROOT_DIR to a directory that contains a GSL installation.
This script expects to find libraries at $GSL_ROOT_DIR/lib and the GSL headers at
$GSL_ROOT_DIR/include/gsl. The library directory may optionally provide Release and Debug
folders. If available, the libraries named gsld, gslblasd or cblasd are recognized as
debug libraries. For Unix-like systems, this script will use $GSL_ROOT_DIR/bin/gsl-config
(if found) to aid in the discovery of GSL.
Cache Variables
This module may set the following variables depending on platform and type of GSL instal‐
lation discovered. These variables may optionally be set to help this module find the
correct files:
GSL_CBLAS_LIBRARY - Location of the GSL CBLAS library.
GSL_CBLAS_LIBRARY_DEBUG - Location of the debug GSL CBLAS library (if any).
GSL_CONFIG_EXECUTABLE - Location of the ``gsl-config`` script (if any).
GSL_LIBRARY - Location of the GSL library.
GSL_LIBRARY_DEBUG - Location of the debug GSL library (if any).
FindGTest
Locate the Google C++ Testing Framework.
Imported targets
This module defines the following IMPORTED targets:
GTest::GTest
The Google Test gtest library, if found; adds Thread::Thread automatically
GTest::Main
The Google Test gtest_main library, if found
Result variables
This module will set the following variables in your project:
GTEST_FOUND
Found the Google Testing framework
GTEST_INCLUDE_DIRS
the directory containing the Google Test headers
The library variables below are set as normal variables. These contain debug/optimized
keywords when a debugging library is found.
GTEST_LIBRARIES
The Google Test gtest library; note it also requires linking with an appropriate
thread library
GTEST_MAIN_LIBRARIES
The Google Test gtest_main library
GTEST_BOTH_LIBRARIES
Both gtest and gtest_main
Cache variables
The following cache variables may also be set:
GTEST_ROOT
The root directory of the Google Test installation (may also be set as an environ‐
ment variable)
GTEST_MSVC_SEARCH
If compiling with MSVC, this variable can be set to MT or MD (the default) to
enable searching a GTest build tree
Example usage
enable_testing()
find_package(GTest REQUIRED)
add_executable(foo foo.cc)
target_link_libraries(foo GTest::GTest GTest::Main)
add_test(AllTestsInFoo foo)
Deeper integration with CTest
See GoogleTest for information on the gtest_add_tests() and gtest_discover_tests() com‐
mands.
FindGTK2
FindGTK2.cmake
This module can find the GTK2 widget libraries and several of its other optional compo‐
nents like gtkmm, glade, and glademm.
NOTE: If you intend to use version checking, CMake 2.6.2 or later is
required.
Specify one or more of the following components as you call this find module. See example
below.
gtk
gtkmm
glade
glademm
The following variables will be defined for your use
GTK2_FOUND - Were all of your specified components found?
GTK2_INCLUDE_DIRS - All include directories
GTK2_LIBRARIES - All libraries
GTK2_TARGETS - All imported targets
GTK2_DEFINITIONS - Additional compiler flags
GTK2_VERSION - The version of GTK2 found (x.y.z)
GTK2_MAJOR_VERSION - The major version of GTK2
GTK2_MINOR_VERSION - The minor version of GTK2
GTK2_PATCH_VERSION - The patch version of GTK2
Optional variables you can define prior to calling this module:
GTK2_DEBUG - Enables verbose debugging of the module
GTK2_ADDITIONAL_SUFFIXES - Allows defining additional directories to
search for include files
================= Example Usage:
Call find_package() once, here are some examples to pick from:
Require GTK 2.6 or later
find_package(GTK2 2.6 REQUIRED gtk)
Require GTK 2.10 or later and Glade
find_package(GTK2 2.10 REQUIRED gtk glade)
Search for GTK/GTKMM 2.8 or later
find_package(GTK2 2.8 COMPONENTS gtk gtkmm)
if(GTK2_FOUND)
include_directories(${GTK2_INCLUDE_DIRS})
add_executable(mygui mygui.cc)
target_link_libraries(mygui ${GTK2_LIBRARIES})
endif()
FindGTK
try to find GTK (and glib) and GTKGLArea
GTK_INCLUDE_DIR - Directories to include to use GTK
GTK_LIBRARIES - Files to link against to use GTK
GTK_FOUND - GTK was found
GTK_GL_FOUND - GTK's GL features were found
FindHDF5
Find HDF5, a library for reading and writing self describing array data.
This module invokes the HDF5 wrapper compiler that should be installed alongside HDF5.
Depending upon the HDF5 Configuration, the wrapper compiler is called either h5cc or
h5pcc. If this succeeds, the module will then call the compiler with the -show argument
to see what flags are used when compiling an HDF5 client application.
The module will optionally accept the COMPONENTS argument. If no COMPONENTS are speci‐
fied, then the find module will default to finding only the HDF5 C library. If one or
more COMPONENTS are specified, the module will attempt to find the language bindings for
the specified components. The only valid components are C, CXX, Fortran, HL, and For‐
tran_HL. If the COMPONENTS argument is not given, the module will attempt to find only
the C bindings.
This module will read the variable HDF5_USE_STATIC_LIBRARIES to determine whether or not
to prefer a static link to a dynamic link for HDF5 and all of it’s dependencies. To use
this feature, make sure that the HDF5_USE_STATIC_LIBRARIES variable is set before the call
to find_package.
To provide the module with a hint about where to find your HDF5 installation, you can set
the environment variable HDF5_ROOT. The Find module will then look in this path when
searching for HDF5 executables, paths, and libraries.
Both the serial and parallel HDF5 wrappers are considered and the first directory to con‐
tain either one will be used. In the event that both appear in the same directory the
serial version is preferentially selected. This behavior can be reversed by setting the
variable HDF5_PREFER_PARALLEL to true.
In addition to finding the includes and libraries required to compile an HDF5 client
application, this module also makes an effort to find tools that come with the HDF5 dis‐
tribution that may be useful for regression testing.
This module will define the following variables:
HDF5_FOUND - true if HDF5 was found on the system
HDF5_VERSION - HDF5 version in format Major.Minor.Release
HDF5_INCLUDE_DIRS - Location of the hdf5 includes
HDF5_INCLUDE_DIR - Location of the hdf5 includes (deprecated)
HDF5_DEFINITIONS - Required compiler definitions for HDF5
HDF5_LIBRARIES - Required libraries for all requested bindings
HDF5_HL_LIBRARIES - Required libraries for the HDF5 high level API for all
bindings, if the HL component is enabled
Available components are: C CXX Fortran and HL. For each enabled language binding, a cor‐
responding HDF5_${LANG}_LIBRARIES variable, and potentially HDF5_${LANG}_DEFINITIONS, will
be defined. If the HL component is enabled, then an HDF5_${LANG}_HL_LIBRARIES will also
be defined. With all components enabled, the following variables will be defined:
HDF5_C_DEFINITIONS -- Required compiler definitions for HDF5 C bindings
HDF5_CXX_DEFINITIONS -- Required compiler definitions for HDF5 C++ bindings
HDF5_Fortran_DEFINITIONS -- Required compiler definitions for HDF5 Fortran bindings
HDF5_C_INCLUDE_DIRS -- Required include directories for HDF5 C bindings
HDF5_CXX_INCLUDE_DIRS -- Required include directories for HDF5 C++ bindings
HDF5_Fortran_INCLUDE_DIRS -- Required include directories for HDF5 Fortran bindings
HDF5_C_LIBRARIES - Required libraries for the HDF5 C bindings
HDF5_CXX_LIBRARIES - Required libraries for the HDF5 C++ bindings
HDF5_Fortran_LIBRARIES - Required libraries for the HDF5 Fortran bindings
HDF5_C_HL_LIBRARIES - Required libraries for the high level C bindings
HDF5_CXX_HL_LIBRARIES - Required libraries for the high level C++ bindings
HDF5_Fortran_HL_LIBRARIES - Required libraries for the high level Fortran
bindings.
HDF5_IS_PARALLEL - Whether or not HDF5 was found with parallel IO support
HDF5_C_COMPILER_EXECUTABLE - the path to the HDF5 C wrapper compiler
HDF5_CXX_COMPILER_EXECUTABLE - the path to the HDF5 C++ wrapper compiler
HDF5_Fortran_COMPILER_EXECUTABLE - the path to the HDF5 Fortran wrapper compiler
HDF5_C_COMPILER_EXECUTABLE_NO_INTERROGATE - path to the primary C compiler
which is also the HDF5 wrapper
HDF5_CXX_COMPILER_EXECUTABLE_NO_INTERROGATE - path to the primary C++
compiler which is also
the HDF5 wrapper
HDF5_Fortran_COMPILER_EXECUTABLE_NO_INTERROGATE - path to the primary
Fortran compiler which
is also the HDF5 wrapper
HDF5_DIFF_EXECUTABLE - the path to the HDF5 dataset comparison tool
The following variable can be set to guide the search for HDF5 libraries and includes:
HDF5_ROOT
Specify the path to the HDF5 installation to use.
HDF5_FIND_DEBUG
Set to a true value to get some extra debugging output.
HDF5_NO_FIND_PACKAGE_CONFIG_FILE
Set to a true value to skip trying to find hdf5-config.cmake.
FindHg
Extract information from a mercurial working copy.
The module defines the following variables:
HG_EXECUTABLE - path to mercurial command line client (hg)
HG_FOUND - true if the command line client was found
HG_VERSION_STRING - the version of mercurial found
If the command line client executable is found the following macro is defined:
HG_WC_INFO(<dir> <var-prefix>)
Hg_WC_INFO extracts information of a mercurial working copy at a given location. This
macro defines the following variables:
<var-prefix>_WC_CHANGESET - current changeset
<var-prefix>_WC_REVISION - current revision
Example usage:
find_package(Hg)
if(HG_FOUND)
message("hg found: ${HG_EXECUTABLE}")
HG_WC_INFO(${PROJECT_SOURCE_DIR} Project)
message("Current revision is ${Project_WC_REVISION}")
message("Current changeset is ${Project_WC_CHANGESET}")
endif()
FindHSPELL
Try to find Hspell
Once done this will define
HSPELL_FOUND - system has Hspell
HSPELL_INCLUDE_DIR - the Hspell include directory
HSPELL_LIBRARIES - The libraries needed to use Hspell
HSPELL_DEFINITIONS - Compiler switches required for using Hspell
HSPELL_VERSION_STRING - The version of Hspell found (x.y)
HSPELL_MAJOR_VERSION - the major version of Hspell
HSPELL_MINOR_VERSION - The minor version of Hspell
FindHTMLHelp
This module looks for Microsoft HTML Help Compiler
It defines:
HTML_HELP_COMPILER : full path to the Compiler (hhc.exe)
HTML_HELP_INCLUDE_PATH : include path to the API (htmlhelp.h)
HTML_HELP_LIBRARY : full path to the library (htmlhelp.lib)
FindIce
Find the ZeroC Internet Communication Engine (ICE) programs, libraries and datafiles.
This module supports multiple components. Components can include any of: Freeze,
Glacier2, Ice, IceBox, IceDB, IceDiscovery, IceGrid, IceLocatorDiscovery, IcePatch,
IceSSL, IceStorm, IceUtil, IceXML, or Slice.
Ice 3.7 and later also include C++11-specific components: Glacier2++11, Ice++11, Ice‐
Box++11, IceDiscovery++11 IceGrid, IceLocatorDiscovery++11, IceSSL++11, IceStorm++11
Note that the set of supported components is Ice version-specific.
This module reports information about the Ice installation in several variables. General
variables:
Ice_VERSION - Ice release version
Ice_FOUND - true if the main programs and libraries were found
Ice_LIBRARIES - component libraries to be linked
Ice_INCLUDE_DIRS - the directories containing the Ice headers
Ice_SLICE_DIRS - the directories containing the Ice slice interface
definitions
Imported targets:
Ice::<C>
Where <C> is the name of an Ice component, for example Ice::Glacier2 or Ice++11.
Ice slice programs are reported in:
Ice_SLICE2CPP_EXECUTABLE - path to slice2cpp executable
Ice_SLICE2CS_EXECUTABLE - path to slice2cs executable
Ice_SLICE2FREEZEJ_EXECUTABLE - path to slice2freezej executable
Ice_SLICE2FREEZE_EXECUTABLE - path to slice2freeze executable
Ice_SLICE2HTML_EXECUTABLE - path to slice2html executable
Ice_SLICE2JAVA_EXECUTABLE - path to slice2java executable
Ice_SLICE2JS_EXECUTABLE - path to slice2js executable
Ice_SLICE2OBJC_EXECUTABLE - path to slice2objc executable
Ice_SLICE2PHP_EXECUTABLE - path to slice2php executable
Ice_SLICE2PY_EXECUTABLE - path to slice2py executable
Ice_SLICE2RB_EXECUTABLE - path to slice2rb executable
Ice programs are reported in:
Ice_GLACIER2ROUTER_EXECUTABLE - path to glacier2router executable
Ice_ICEBOX_EXECUTABLE - path to icebox executable
Ice_ICEBOXXX11_EXECUTABLE - path to icebox++11 executable
Ice_ICEBOXADMIN_EXECUTABLE - path to iceboxadmin executable
Ice_ICEBOXD_EXECUTABLE - path to iceboxd executable
Ice_ICEBOXNET_EXECUTABLE - path to iceboxnet executable
Ice_ICEBRIDGE_EXECUTABLE - path to icebridge executable
Ice_ICEGRIDADMIN_EXECUTABLE - path to icegridadmin executable
Ice_ICEGRIDDB_EXECUTABLE - path to icegriddb executable
Ice_ICEGRIDNODE_EXECUTABLE - path to icegridnode executable
Ice_ICEGRIDNODED_EXECUTABLE - path to icegridnoded executable
Ice_ICEGRIDREGISTRY_EXECUTABLE - path to icegridregistry executable
Ice_ICEGRIDREGISTRYD_EXECUTABLE - path to icegridregistryd executable
Ice_ICEPATCH2CALC_EXECUTABLE - path to icepatch2calc executable
Ice_ICEPATCH2CLIENT_EXECUTABLE - path to icepatch2client executable
Ice_ICEPATCH2SERVER_EXECUTABLE - path to icepatch2server executable
Ice_ICESERVICEINSTALL_EXECUTABLE - path to iceserviceinstall executable
Ice_ICESTORMADMIN_EXECUTABLE - path to icestormadmin executable
Ice_ICESTORMDB_EXECUTABLE - path to icestormdb executable
Ice_ICESTORMMIGRATE_EXECUTABLE - path to icestormmigrate executable
Ice db programs (Windows only; standard system versions on all other platforms) are
reported in:
Ice_DB_ARCHIVE_EXECUTABLE - path to db_archive executable
Ice_DB_CHECKPOINT_EXECUTABLE - path to db_checkpoint executable
Ice_DB_DEADLOCK_EXECUTABLE - path to db_deadlock executable
Ice_DB_DUMP_EXECUTABLE - path to db_dump executable
Ice_DB_HOTBACKUP_EXECUTABLE - path to db_hotbackup executable
Ice_DB_LOAD_EXECUTABLE - path to db_load executable
Ice_DB_LOG_VERIFY_EXECUTABLE - path to db_log_verify executable
Ice_DB_PRINTLOG_EXECUTABLE - path to db_printlog executable
Ice_DB_RECOVER_EXECUTABLE - path to db_recover executable
Ice_DB_STAT_EXECUTABLE - path to db_stat executable
Ice_DB_TUNER_EXECUTABLE - path to db_tuner executable
Ice_DB_UPGRADE_EXECUTABLE - path to db_upgrade executable
Ice_DB_VERIFY_EXECUTABLE - path to db_verify executable
Ice_DUMPDB_EXECUTABLE - path to dumpdb executable
Ice_TRANSFORMDB_EXECUTABLE - path to transformdb executable
Ice component libraries are reported in:
Ice_<C>_FOUND - ON if component was found
Ice_<C>_LIBRARIES - libraries for component
Note that <C> is the uppercased name of the component.
This module reads hints about search results from:
Ice_HOME - the root of the Ice installation
The environment variable ICE_HOME may also be used; the Ice_HOME variable takes prece‐
dence.
NOTE:
On Windows, Ice 3.7.0 and later provide libraries via the NuGet package manager.
Appropriate NuGet packages will be searched for using CMAKE_PREFIX_PATH, or alterna‐
tively Ice_HOME may be set to the location of a specific NuGet package to restrict the
search.
The following cache variables may also be set:
Ice_<P>_EXECUTABLE - the path to executable <P>
Ice_INCLUDE_DIR - the directory containing the Ice headers
Ice_SLICE_DIR - the directory containing the Ice slice interface
definitions
Ice_<C>_LIBRARY - the library for component <C>
NOTE:
In most cases none of the above variables will require setting, unless multiple Ice
versions are available and a specific version is required. On Windows, the most recent
version of Ice will be found through the registry. On Unix, the programs, headers and
libraries will usually be in standard locations, but Ice_SLICE_DIRS might not be auto‐
matically detected (commonly known locations are searched). All the other variables
are defaulted using Ice_HOME, if set. It’s possible to set Ice_HOME and selectively
specify alternative locations for the other components; this might be required for e.g.
newer versions of Visual Studio if the heuristics are not sufficient to identify the
correct programs and libraries for the specific Visual Studio version.
Other variables one may set to control this module are:
Ice_DEBUG - Set to ON to enable debug output from FindIce.
FindIcotool
Find icotool
This module looks for icotool. This module defines the following values:
ICOTOOL_EXECUTABLE: the full path to the icotool tool.
ICOTOOL_FOUND: True if icotool has been found.
ICOTOOL_VERSION_STRING: the version of icotool found.
FindICU
Find the International Components for Unicode (ICU) libraries and programs.
This module supports multiple components. Components can include any of: data, i18n, io,
le, lx, test, tu and uc.
Note that on Windows data is named dt and i18n is named in; any of the names may be used,
and the appropriate platform-specific library name will be automatically selected.
This module reports information about the ICU installation in several variables. General
variables:
ICU_VERSION - ICU release version
ICU_FOUND - true if the main programs and libraries were found
ICU_LIBRARIES - component libraries to be linked
ICU_INCLUDE_DIRS - the directories containing the ICU headers
Imported targets:
ICU::<C>
Where <C> is the name of an ICU component, for example ICU::i18n.
ICU programs are reported in:
ICU_GENCNVAL_EXECUTABLE - path to gencnval executable
ICU_ICUINFO_EXECUTABLE - path to icuinfo executable
ICU_GENBRK_EXECUTABLE - path to genbrk executable
ICU_ICU-CONFIG_EXECUTABLE - path to icu-config executable
ICU_GENRB_EXECUTABLE - path to genrb executable
ICU_GENDICT_EXECUTABLE - path to gendict executable
ICU_DERB_EXECUTABLE - path to derb executable
ICU_PKGDATA_EXECUTABLE - path to pkgdata executable
ICU_UCONV_EXECUTABLE - path to uconv executable
ICU_GENCFU_EXECUTABLE - path to gencfu executable
ICU_MAKECONV_EXECUTABLE - path to makeconv executable
ICU_GENNORM2_EXECUTABLE - path to gennorm2 executable
ICU_GENCCODE_EXECUTABLE - path to genccode executable
ICU_GENSPREP_EXECUTABLE - path to gensprep executable
ICU_ICUPKG_EXECUTABLE - path to icupkg executable
ICU_GENCMN_EXECUTABLE - path to gencmn executable
ICU component libraries are reported in:
ICU_<C>_FOUND - ON if component was found
ICU_<C>_LIBRARIES - libraries for component
ICU datafiles are reported in:
ICU_MAKEFILE_INC - Makefile.inc
ICU_PKGDATA_INC - pkgdata.inc
Note that <C> is the uppercased name of the component.
This module reads hints about search results from:
ICU_ROOT - the root of the ICU installation
The environment variable ICU_ROOT may also be used; the ICU_ROOT variable takes prece‐
dence.
The following cache variables may also be set:
ICU_<P>_EXECUTABLE - the path to executable <P>
ICU_INCLUDE_DIR - the directory containing the ICU headers
ICU_<C>_LIBRARY - the library for component <C>
NOTE:
In most cases none of the above variables will require setting, unless multiple ICU
versions are available and a specific version is required.
Other variables one may set to control this module are:
ICU_DEBUG - Set to ON to enable debug output from FindICU.
FindImageMagick
Find the ImageMagick binary suite.
This module will search for a set of ImageMagick tools specified as components in the
FIND_PACKAGE call. Typical components include, but are not limited to (future versions of
ImageMagick might have additional components not listed here):
animate
compare
composite
conjure
convert
display
identify
import
mogrify
montage
stream
If no component is specified in the FIND_PACKAGE call, then it only searches for the
ImageMagick executable directory. This code defines the following variables:
ImageMagick_FOUND - TRUE if all components are found.
ImageMagick_EXECUTABLE_DIR - Full path to executables directory.
ImageMagick_<component>_FOUND - TRUE if <component> is found.
ImageMagick_<component>_EXECUTABLE - Full path to <component> executable.
ImageMagick_VERSION_STRING - the version of ImageMagick found
(since CMake 2.8.8)
ImageMagick_VERSION_STRING will not work for old versions like 5.2.3.
There are also components for the following ImageMagick APIs:
Magick++
MagickWand
MagickCore
For these components the following variables are set:
ImageMagick_FOUND - TRUE if all components are found.
ImageMagick_INCLUDE_DIRS - Full paths to all include dirs.
ImageMagick_LIBRARIES - Full paths to all libraries.
ImageMagick_<component>_FOUND - TRUE if <component> is found.
ImageMagick_<component>_INCLUDE_DIRS - Full path to <component> include dirs.
ImageMagick_<component>_LIBRARIES - Full path to <component> libraries.
Example Usages:
find_package(ImageMagick)
find_package(ImageMagick COMPONENTS convert)
find_package(ImageMagick COMPONENTS convert mogrify display)
find_package(ImageMagick COMPONENTS Magick++)
find_package(ImageMagick COMPONENTS Magick++ convert)
Note that the standard FIND_PACKAGE features are supported (i.e., QUIET, REQUIRED, etc.).
FindIntl
Find the Gettext libintl headers and libraries.
This module reports information about the Gettext libintl installation in several vari‐
ables. General variables:
Intl_FOUND - true if the libintl headers and libraries were found
Intl_INCLUDE_DIRS - the directory containing the libintl headers
Intl_LIBRARIES - libintl libraries to be linked
The following cache variables may also be set:
Intl_INCLUDE_DIR - the directory containing the libintl headers
Intl_LIBRARY - the libintl library (if any)
NOTE:
On some platforms, such as Linux with GNU libc, the gettext functions are present in
the C standard library and libintl is not required. Intl_LIBRARIES will be empty in
this case.
NOTE:
If you wish to use the Gettext tools (msgmerge, msgfmt, etc.), use FindGettext.
FindITK
This module no longer exists.
This module existed in versions of CMake prior to 3.1, but became only a thin wrapper
around find_package(ITK NO_MODULE) to provide compatibility for projects using long-out‐
dated conventions. Now find_package(ITK) will search for ITKConfig.cmake directly.
FindJasper
Try to find the Jasper JPEG2000 library
Once done this will define
JASPER_FOUND - system has Jasper
JASPER_INCLUDE_DIR - the Jasper include directory
JASPER_LIBRARIES - the libraries needed to use Jasper
JASPER_VERSION_STRING - the version of Jasper found (since CMake 2.8.8)
FindJava
Find Java
This module finds if Java is installed and determines where the include files and
libraries are. The caller may set variable JAVA_HOME to specify a Java installation pre‐
fix explicitly.
See also the FindJNI module to find Java development tools.
Specify one or more of the following components as you call this find module. See example
below.
Runtime = User just want to execute some Java byte-compiled
Development = Development tools (java, javac, javah and javadoc), includes Runtime compone ↲
nt
IdlJ = idl compiler for Java
JarSigner = signer tool for jar
This module sets the following result variables:
Java_JAVA_EXECUTABLE = the full path to the Java runtime
Java_JAVAC_EXECUTABLE = the full path to the Java compiler
Java_JAVAH_EXECUTABLE = the full path to the Java header generator
Java_JAVADOC_EXECUTABLE = the full path to the Java documentation generator
Java_IDLJ_EXECUTABLE = the full path to the Java idl compiler
Java_JAR_EXECUTABLE = the full path to the Java archiver
Java_JARSIGNER_EXECUTABLE = the full path to the Java jar signer
Java_VERSION_STRING = Version of java found, eg. 1.6.0_12
Java_VERSION_MAJOR = The major version of the package found.
Java_VERSION_MINOR = The minor version of the package found.
Java_VERSION_PATCH = The patch version of the package found.
Java_VERSION_TWEAK = The tweak version of the package found (after '_')
Java_VERSION = This is set to: $major[.$minor[.$patch[.$tweak]]]
The minimum required version of Java can be specified using the standard CMake syntax,
e.g. find_package(Java 1.5)
NOTE: ${Java_VERSION} and ${Java_VERSION_STRING} are not guaranteed to be identical. For
example some java version may return: Java_VERSION_STRING = 1.5.0_17 and Java_VERSION =
1.5.0.17
another example is the Java OEM, with: Java_VERSION_STRING = 1.6.0-oem and Java_VERSION =
1.6.0
For these components the following variables are set:
Java_FOUND - TRUE if all components are found.
Java_<component>_FOUND - TRUE if <component> is found.
Example Usages:
find_package(Java)
find_package(Java COMPONENTS Runtime)
find_package(Java COMPONENTS Development)
FindJNI
Find JNI java libraries.
This module finds if Java is installed and determines where the include files and
libraries are. It also determines what the name of the library is. The caller may set
variable JAVA_HOME to specify a Java installation prefix explicitly.
This module sets the following result variables:
JNI_INCLUDE_DIRS = the include dirs to use
JNI_LIBRARIES = the libraries to use
JNI_FOUND = TRUE if JNI headers and libraries were found.
JAVA_AWT_LIBRARY = the path to the jawt library
JAVA_JVM_LIBRARY = the path to the jvm library
JAVA_INCLUDE_PATH = the include path to jni.h
JAVA_INCLUDE_PATH2 = the include path to jni_md.h
JAVA_AWT_INCLUDE_PATH = the include path to jawt.h
FindJPEG
Find JPEG
Find the native JPEG includes and library This module defines
JPEG_INCLUDE_DIR, where to find jpeglib.h, etc.
JPEG_LIBRARIES, the libraries needed to use JPEG.
JPEG_FOUND, If false, do not try to use JPEG.
also defined, but not for general use are
JPEG_LIBRARY, where to find the JPEG library.
FindKDE3
Find the KDE3 include and library dirs, KDE preprocessors and define a some macros
This module defines the following variables:
KDE3_DEFINITIONS
compiler definitions required for compiling KDE software
KDE3_INCLUDE_DIR
the KDE include directory
KDE3_INCLUDE_DIRS
the KDE and the Qt include directory, for use with include_directories()
KDE3_LIB_DIR
the directory where the KDE libraries are installed, for use with link_directo‐
ries()
QT_AND_KDECORE_LIBS
this contains both the Qt and the kdecore library
KDE3_DCOPIDL_EXECUTABLE
the dcopidl executable
KDE3_DCOPIDL2CPP_EXECUTABLE
the dcopidl2cpp executable
KDE3_KCFGC_EXECUTABLE
the kconfig_compiler executable
KDE3_FOUND
set to TRUE if all of the above has been found
The following user adjustable options are provided:
KDE3_BUILD_TESTS
enable this to build KDE testcases
It also adds the following macros (from KDE3Macros.cmake) SRCS_VAR is always the variable
which contains the list of source files for your application or library.
KDE3_AUTOMOC(file1 … fileN)
Call this if you want to have automatic moc file handling.
This means if you include "foo.moc" in the source file foo.cpp
a moc file for the header foo.h will be created automatically.
You can set the property SKIP_AUTOMAKE using set_source_files_properties()
to exclude some files in the list from being processed.
KDE3_ADD_MOC_FILES(SRCS_VAR file1 … fileN )
If you don't use the KDE3_AUTOMOC() macro, for the files
listed here moc files will be created (named "foo.moc.cpp")
KDE3_ADD_DCOP_SKELS(SRCS_VAR header1.h … headerN.h )
Use this to generate DCOP skeletions from the listed headers.
KDE3_ADD_DCOP_STUBS(SRCS_VAR header1.h … headerN.h )
Use this to generate DCOP stubs from the listed headers.
KDE3_ADD_UI_FILES(SRCS_VAR file1.ui … fileN.ui )
Use this to add the Qt designer ui files to your application/library.
KDE3_ADD_KCFG_FILES(SRCS_VAR file1.kcfgc … fileN.kcfgc )
Use this to add KDE kconfig compiler files to your application/library.
KDE3_INSTALL_LIBTOOL_FILE(target)
This will create and install a simple libtool file for the given target.
KDE3_ADD_EXECUTABLE(name file1 … fileN )
Currently identical to add_executable(), may provide some advanced
features in the future.
KDE3_ADD_KPART(name [WITH_PREFIX] file1 … fileN )
Create a KDE plugin (KPart, kioslave, etc.) from the given source files.
If WITH_PREFIX is given, the resulting plugin will have the prefix "lib",
otherwise it won't.
It creates and installs an appropriate libtool la-file.
KDE3_ADD_KDEINIT_EXECUTABLE(name file1 … fileN )
Create a KDE application in the form of a module loadable via kdeinit.
A library named kdeinit_<name> will be created and a small executable
which links to it.
The option KDE3_ENABLE_FINAL to enable all-in-one compilation is no longer supported.
Author: Alexander Neundorf <
@kde.org>
FindKDE4
Find KDE4 and provide all necessary variables and macros to compile software for it. It
looks for KDE 4 in the following directories in the given order:
CMAKE_INSTALL_PREFIX
KDEDIRS
/opt/kde4
Please look in FindKDE4Internal.cmake and KDE4Macros.cmake for more information. They are
installed with the KDE 4 libraries in $KDEDIRS/share/apps/cmake/modules/.
Author: Alexander Neundorf <
@kde.org>
FindLAPACK
Find LAPACK library
This module finds an installed fortran library that implements the LAPACK linear-algebra
interface (see http://www.netlib.org/lapack/).
The approach follows that taken for the autoconf macro file, acx_lapack.m4 (distributed at
http://ac-archive.sourceforge.net/ac-archive/acx_lapack.html).
This module sets the following variables:
LAPACK_FOUND - set to true if a library implementing the LAPACK interface
is found
LAPACK_LINKER_FLAGS - uncached list of required linker flags (excluding -l
and -L).
LAPACK_LIBRARIES - uncached list of libraries (using full path name) to
link against to use LAPACK
LAPACK95_LIBRARIES - uncached list of libraries (using full path name) to
link against to use LAPACK95
LAPACK95_FOUND - set to true if a library implementing the LAPACK f95
interface is found
BLA_STATIC if set on this determines what kind of linkage we do (static)
BLA_VENDOR if set checks only the specified vendor, if not set checks
all the possibilities
BLA_F95 if set on tries to find the f95 interfaces for BLAS/LAPACK
List of vendors (BLA_VENDOR) valid in this module:
· Intel(mkl)
· OpenBLAS
· ACML
· Apple
· NAS
· Generic
FindLATEX
Find Latex
This module finds an installed Latex and determines the location of the compiler. Addi‐
tionally the module looks for Latex-related software like BibTeX.
This module sets the following result variables:
LATEX_FOUND: whether found Latex and requested components
LATEX_<component>_FOUND: whether found <component>
LATEX_COMPILER: path to the LaTeX compiler
PDFLATEX_COMPILER: path to the PdfLaTeX compiler
XELATEX_COMPILER: path to the XeLaTeX compiler
LUALATEX_COMPILER: path to the LuaLaTeX compiler
BIBTEX_COMPILER: path to the BibTeX compiler
BIBER_COMPILER: path to the Biber compiler
MAKEINDEX_COMPILER: path to the MakeIndex compiler
XINDY_COMPILER: path to the xindy compiler
DVIPS_CONVERTER: path to the DVIPS converter
DVIPDF_CONVERTER: path to the DVIPDF converter
PS2PDF_CONVERTER: path to the PS2PDF converter
PDFTOPS_CONVERTER: path to the pdftops converter
LATEX2HTML_CONVERTER: path to the LaTeX2Html converter
HTLATEX_COMPILER: path to the htlatex compiler
Possible components are:
PDFLATEX
XELATEX
LUALATEX
BIBTEX
BIBER
MAKEINDEX
XINDY
DVIPS
DVIPDF
PS2PDF
PDFTOPS
LATEX2HTML
HTLATEX
Example Usages:
find_package(LATEX)
find_package(LATEX COMPONENTS PDFLATEX)
find_package(LATEX COMPONENTS BIBTEX PS2PDF)
FindLibArchive
Find libarchive library and headers
The module defines the following variables:
LibArchive_FOUND - true if libarchive was found
LibArchive_INCLUDE_DIRS - include search path
LibArchive_LIBRARIES - libraries to link
LibArchive_VERSION - libarchive 3-component version number
FindLibLZMA
Find LibLZMA
Find LibLZMA headers and library
LIBLZMA_FOUND - True if liblzma is found.
LIBLZMA_INCLUDE_DIRS - Directory where liblzma headers are located.
LIBLZMA_LIBRARIES - Lzma libraries to link against.
LIBLZMA_HAS_AUTO_DECODER - True if lzma_auto_decoder() is found (required).
LIBLZMA_HAS_EASY_ENCODER - True if lzma_easy_encoder() is found (required).
LIBLZMA_HAS_LZMA_PRESET - True if lzma_lzma_preset() is found (required).
LIBLZMA_VERSION_MAJOR - The major version of lzma
LIBLZMA_VERSION_MINOR - The minor version of lzma
LIBLZMA_VERSION_PATCH - The patch version of lzma
LIBLZMA_VERSION_STRING - version number as a string (ex: "5.0.3")
FindLibXml2
Find the XML processing library (libxml2).
Result variables
This module will set the following variables in your project:
LIBXML2_FOUND
true if libxml2 headers and libraries were found
LIBXML2_INCLUDE_DIR
the directory containing LibXml2 headers
LIBXML2_INCLUDE_DIRS
list of the include directories needed to use LibXml2
LIBXML2_LIBRARIES
LibXml2 libraries to be linked
LIBXML2_DEFINITIONS
the compiler switches required for using LibXml2
LIBXML2_XMLLINT_EXECUTABLE
path to the XML checking tool xmllint coming with LibXml2
LIBXML2_VERSION_STRING
the version of LibXml2 found (since CMake 2.8.8)
Cache variables
The following cache variables may also be set:
LIBXML2_INCLUDE_DIR
the directory containing LibXml2 headers
LIBXML2_LIBRARY
path to the LibXml2 library
FindLibXslt
Try to find the LibXslt library
Once done this will define
LIBXSLT_FOUND - system has LibXslt
LIBXSLT_INCLUDE_DIR - the LibXslt include directory
LIBXSLT_LIBRARIES - Link these to LibXslt
LIBXSLT_DEFINITIONS - Compiler switches required for using LibXslt
LIBXSLT_VERSION_STRING - version of LibXslt found (since CMake 2.8.8)
Additionally, the following two variables are set (but not required for using xslt):
LIBXSLT_EXSLT_LIBRARIES
Link to these if you need to link against the exslt library.
LIBXSLT_XSLTPROC_EXECUTABLE
Contains the full path to the xsltproc executable if found.
FindLTTngUST
This module finds the LTTng-UST library.
Imported target
This module defines the following IMPORTED target:
LTTng::UST
The LTTng-UST library, if found
Result variables
This module sets the following
LTTNGUST_FOUND
TRUE if system has LTTng-UST
LTTNGUST_INCLUDE_DIRS
The LTTng-UST include directories
LTTNGUST_LIBRARIES
The libraries needed to use LTTng-UST
LTTNGUST_VERSION_STRING
The LTTng-UST version
LTTNGUST_HAS_TRACEF
TRUE if the tracef() API is available in the system’s LTTng-UST
LTTNGUST_HAS_TRACELOG
TRUE if the tracelog() API is available in the system’s LTTng-UST
FindLua50
Locate Lua library This module defines
LUA50_FOUND, if false, do not try to link to Lua
LUA_LIBRARIES, both lua and lualib
LUA_INCLUDE_DIR, where to find lua.h and lualib.h (and probably lauxlib.h)
Note that the expected include convention is
#include "lua.h"
and not
#include <lua/lua.h>
This is because, the lua location is not standardized and may exist in locations other
than lua/
FindLua51
Locate Lua library This module defines
LUA51_FOUND, if false, do not try to link to Lua
LUA_LIBRARIES
LUA_INCLUDE_DIR, where to find lua.h
LUA_VERSION_STRING, the version of Lua found (since CMake 2.8.8)
Note that the expected include convention is
#include "lua.h"
and not
#include <lua/lua.h>
This is because, the lua location is not standardized and may exist in locations other
than lua/
FindLua
Locate Lua library This module defines
LUA_FOUND - if false, do not try to link to Lua
LUA_LIBRARIES - both lua and lualib
LUA_INCLUDE_DIR - where to find lua.h
LUA_VERSION_STRING - the version of Lua found
LUA_VERSION_MAJOR - the major version of Lua
LUA_VERSION_MINOR - the minor version of Lua
LUA_VERSION_PATCH - the patch version of Lua
Note that the expected include convention is
#include "lua.h"
and not
#include <lua/lua.h>
This is because, the lua location is not standardized and may exist in locations other
than lua/
FindMatlab
Finds Matlab installations and provides Matlab tools and libraries to cmake.
This package first intention is to find the libraries associated with Matlab in order to
be able to build Matlab extensions (mex files). It can also be used:
· run specific commands in Matlab
· declare Matlab unit test
· retrieve various information from Matlab (mex extensions, versions and release queries,
…)
The module supports the following components:
· MX_LIBRARY, ENG_LIBRARY and MAT_LIBRARY: respectively the MX, ENG and MAT libraries of
Matlab
· MAIN_PROGRAM the Matlab binary program.
· MEX_COMPILER the MEX compiler.
· SIMULINK the Simulink environment.
NOTE:
The version given to the find_package() directive is the Matlab version, which should
not be confused with the Matlab release name (eg. R2014). The
matlab_get_version_from_release_name() and matlab_get_release_name_from_version() allow
a mapping from the release name to the version.
The variable Matlab_ROOT_DIR may be specified in order to give the path of the desired
Matlab version. Otherwise, the behaviour is platform specific:
· Windows: The installed versions of Matlab are retrieved from the Windows registry
· OS X: The installed versions of Matlab are given by the MATLAB paths in /Application. If
no such application is found, it falls back to the one that might be accessible from the
PATH.
· Unix: The desired Matlab should be accessible from the PATH.
Additional information is provided when MATLAB_FIND_DEBUG is set. When a Matlab binary is
found automatically and the MATLAB_VERSION is not given, the version is queried from Mat‐
lab directly. On Windows, it can make a window running Matlab appear.
The mapping of the release names and the version of Matlab is performed by defining pairs
(name, version). The variable MATLAB_ADDITIONAL_VERSIONS may be provided before the call
to the find_package() in order to handle additional versions.
A Matlab scripts can be added to the set of tests using the matlab_add_unit_test(). By
default, the Matlab unit test framework will be used (>= 2013a) to run this script, but
regular .m files returning an exit code can be used as well (0 indicating a success).
Module Input Variables
Users or projects may set the following variables to configure the module behaviour:
Matlab_ROOT_DIR
the root of the Matlab installation.
MATLAB_FIND_DEBUG
outputs debug information
MATLAB_ADDITIONAL_VERSIONS
additional versions of Matlab for the automatic retrieval of the installed ver‐
sions.
Variables defined by the module
Result variables
Matlab_FOUND
TRUE if the Matlab installation is found, FALSE otherwise. All variable below are
defined if Matlab is found.
Matlab_ROOT_DIR
the final root of the Matlab installation determined by the FindMatlab module.
Matlab_MAIN_PROGRAM
the Matlab binary program. Available only if the component MAIN_PROGRAM is given in
the find_package() directive.
Matlab_INCLUDE_DIRS
the path of the Matlab libraries headers
Matlab_MEX_LIBRARY
library for mex, always available.
Matlab_MX_LIBRARY
mx library of Matlab (arrays). Available only if the component MX_LIBRARY has been
requested.
Matlab_ENG_LIBRARY
Matlab engine library. Available only if the component ENG_LIBRARY is requested.
Matlab_MAT_LIBRARY
Matlab matrix library. Available only if the component MAT_LIBRARY is requested.
Matlab_LIBRARIES
the whole set of libraries of Matlab
Matlab_MEX_COMPILER
the mex compiler of Matlab. Currently not used. Available only if the component
MEX_COMPILER is asked
Cached variables
Matlab_MEX_EXTENSION
the extension of the mex files for the current platform (given by Matlab).
Matlab_ROOT_DIR
the location of the root of the Matlab installation found. If this value is changed
by the user, the result variables are recomputed.
Provided macros
matlab_get_version_from_release_name()
returns the version from the release name
matlab_get_release_name_from_version()
returns the release name from the Matlab version
Provided functions
matlab_add_mex()
adds a target compiling a MEX file.
matlab_add_unit_test()
adds a Matlab unit test file as a test to the project.
matlab_extract_all_installed_versions_from_registry()
parses the registry for all Matlab versions. Available on Windows only. The part
of the registry parsed is dependent on the host processor
matlab_get_all_valid_matlab_roots_from_registry()
returns all the possible Matlab paths, according to a previously given list. Only
the existing/accessible paths are kept. This is mainly useful for the searching all
possible Matlab installation.
matlab_get_mex_suffix()
returns the suffix to be used for the mex files (platform/architecture dependent)
matlab_get_version_from_matlab_run()
returns the version of Matlab, given the full directory of the Matlab program.
Known issues
Symbol clash in a MEX target
By default, every symbols inside a MEX file defined with the command
matlab_add_mex() have hidden visibility, except for the entry point. This is the
default behaviour of the MEX compiler, which lowers the risk of symbol collision
between the libraries shipped with Matlab, and the libraries to which the MEX file
is linking to. This is also the default on Windows platforms.
However, this is not sufficient in certain case, where for instance your MEX file
is linking against libraries that are already loaded by Matlab, even if those
libraries have different SONAMES. A possible solution is to hide the symbols of
the libraries to which the MEX target is linking to. This can be achieved in GNU
GCC compilers with the linker option -Wl,--exclude-libs,ALL.
Tests using GPU resources
in case your MEX file is using the GPU and in order to be able to run unit tests on
this MEX file, the GPU resources should be properly released by Matlab. A possible
solution is to make Matlab aware of the use of the GPU resources in the session,
which can be performed by a command such as D = gpuDevice() at the beginning of the
test script (or via a fixture).
Reference
Matlab_ROOT_DIR
The root folder of the Matlab installation. If set before the call to find_pack‐
age(), the module will look for the components in that path. If not set, then an
automatic search of Matlab will be performed. If set, it should point to a valid
version of Matlab.
MATLAB_FIND_DEBUG
If set, the lookup of Matlab and the intermediate configuration steps are outputted
to the console.
MATLAB_ADDITIONAL_VERSIONS
If set, specifies additional versions of Matlab that may be looked for. The vari‐
able should be a list of strings, organised by pairs of release name and versions,
such as follows:
set(MATLAB_ADDITIONAL_VERSIONS
"release_name1=corresponding_version1"
"release_name2=corresponding_version2"
...
)
Example:
set(MATLAB_ADDITIONAL_VERSIONS
"R2013b=8.2"
"R2013a=8.1"
"R2012b=8.0")
The order of entries in this list matters when several versions of Matlab are
installed. The priority is set according to the ordering in this list.
matlab_get_version_from_release_name
Returns the version of Matlab (17.58) from a release name (R2017k)
matlab_get_release_name_from_version
Returns the release name (R2017k) from the version of Matlab (17.58)
matlab_extract_all_installed_versions_from_registry
This function parses the registry and founds the Matlab versions that are
installed. The found versions are returned in matlab_versions. Set win64 to TRUE
if the 64 bit version of Matlab should be looked for The returned list contains all
versions under HKLM\\SOFTWARE\\Mathworks\\MATLAB or an empty list in case an error
occurred (or nothing found).
NOTE:
Only the versions are provided. No check is made over the existence of the
installation referenced in the registry,
matlab_get_all_valid_matlab_roots_from_registry
Populates the Matlab root with valid versions of Matlab. The returned matlab_roots
is organized in pairs (version_number,matlab_root_path).
matlab_get_all_valid_matlab_roots_from_registry(
matlab_versions
matlab_roots)
matlab_versions
the versions of each of the Matlab installations
matlab_roots
the location of each of the Matlab installations
matlab_get_mex_suffix
Returns the extension of the mex files (the suffixes). This function should not be
called before the appropriate Matlab root has been found.
matlab_get_mex_suffix(
matlab_root
mex_suffix)
matlab_root
the root of the Matlab installation
mex_suffix
the variable name in which the suffix will be returned.
matlab_get_version_from_matlab_run
This function runs Matlab program specified on arguments and extracts its version.
matlab_get_version_from_matlab_run(
matlab_binary_path
matlab_list_versions)
matlab_binary_path
the location of the matlab binary executable
matlab_list_versions
the version extracted from Matlab
matlab_add_unit_test
Adds a Matlab unit test to the test set of cmake/ctest. This command requires the
component MAIN_PROGRAM. The unit test uses the Matlab unittest framework (default,
available starting Matlab 2013b+) except if the option NO_UNITTEST_FRAMEWORK is
given.
The function expects one Matlab test script file to be given. In the case
NO_UNITTEST_FRAMEWORK is given, the unittest script file should contain the script
to be run, plus an exit command with the exit value. This exit value will be passed
to the ctest framework (0 success, non 0 failure). Additional arguments accepted by
add_test() can be passed through TEST_ARGS (eg. CONFIGURATION <config> ...).
matlab_add_unit_test(
NAME <name>
UNITTEST_FILE matlab_file_containing_unittest.m
[CUSTOM_TEST_COMMAND matlab_command_to_run_as_test]
[UNITTEST_PRECOMMAND matlab_command_to_run]
[TIMEOUT timeout]
[ADDITIONAL_PATH path1 [path2 ...]]
[MATLAB_ADDITIONAL_STARTUP_OPTIONS option1 [option2 ...]]
[TEST_ARGS arg1 [arg2 ...]]
[NO_UNITTEST_FRAMEWORK]
)
The function arguments are:
NAME name of the unittest in ctest.
UNITTEST_FILE
the matlab unittest file. Its path will be automatically added to the Matlab
path.
CUSTOM_TEST_COMMAND
Matlab script command to run as the test. If this is not set, then the fol‐
lowing is run: runtests('matlab_file_name'), exit(max([ans(1,:).Failed]))
where matlab_file_name is the UNITTEST_FILE without the extension.
UNITTEST_PRECOMMAND
Matlab script command to be ran before the file containing the test (eg. GPU
device initialisation based on CMake variables).
TIMEOUT
the test timeout in seconds. Defaults to 180 seconds as the Matlab unit test
may hang.
ADDITIONAL_PATH
a list of paths to add to the Matlab path prior to running the unit test.
MATLAB_ADDITIONAL_STARTUP_OPTIONS
a list of additional option in order to run Matlab from the command line.
-nosplash -nodesktop -nodisplay are always added.
TEST_ARGS
Additional options provided to the add_test command. These options are added
to the default options (eg. “CONFIGURATIONS Release”)
NO_UNITTEST_FRAMEWORK
when set, indicates that the test should not use the unittest framework of
Matlab (available for versions >= R2013a).
WORKING_DIRECTORY
This will be the working directory for the test. If specified it will also
be the output directory used for the log file of the test run. If not
specifed the temporary directory ${CMAKE_BINARY_DIR}/Matlab will be used as
the working directory and the log location.
matlab_add_mex
Adds a Matlab MEX target. This commands compiles the given sources with the cur‐
rent tool-chain in order to produce a MEX file. The final name of the produced out‐
put may be specified, as well as additional link libraries, and a documentation
entry for the MEX file. Remaining arguments of the call are passed to the
add_library() or add_executable() command.
matlab_add_mex(
NAME <name>
[EXECUTABLE | MODULE | SHARED]
SRC src1 [src2 ...]
[OUTPUT_NAME output_name]
[DOCUMENTATION file.txt]
[LINK_TO target1 target2 ...]
[...]
)
NAME name of the target.
SRC list of source files.
LINK_TO
a list of additional link dependencies. The target links to libmex by
default. If Matlab_MX_LIBRARY is defined, it also links to libmx.
OUTPUT_NAME
if given, overrides the default name. The default name is the name of the
target without any prefix and with Matlab_MEX_EXTENSION suffix.
DOCUMENTATION
if given, the file file.txt will be considered as being the documentation
file for the MEX file. This file is copied into the same folder without any
processing, with the same name as the final mex file, and with extension .m.
In that case, typing help <name> in Matlab prints the documentation con‐
tained in this file.
MODULE or SHARED may be given to specify the type of library to be
created. EXECUTABLE may be given to create an executable instead of a
library. If no type is given explicitly, the type is SHARED.
The documentation file is not processed and should be in the following format:
% This is the documentation
function ret = mex_target_output_name(input1)
FindMFC
Find MFC on Windows
Find the native MFC - i.e. decide if an application can link to the MFC libraries.
MFC_FOUND - Was MFC support found
You don’t need to include anything or link anything to use it.
FindMotif
Try to find Motif (or lesstif)
Once done this will define:
MOTIF_FOUND - system has MOTIF
MOTIF_INCLUDE_DIR - include paths to use Motif
MOTIF_LIBRARIES - Link these to use Motif
FindMPEG2
Find the native MPEG2 includes and library
This module defines
MPEG2_INCLUDE_DIR, path to mpeg2dec/mpeg2.h, etc.
MPEG2_LIBRARIES, the libraries required to use MPEG2.
MPEG2_FOUND, If false, do not try to use MPEG2.
also defined, but not for general use are
MPEG2_mpeg2_LIBRARY, where to find the MPEG2 library.
MPEG2_vo_LIBRARY, where to find the vo library.
FindMPEG
Find the native MPEG includes and library
This module defines
MPEG_INCLUDE_DIR, where to find MPEG.h, etc.
MPEG_LIBRARIES, the libraries required to use MPEG.
MPEG_FOUND, If false, do not try to use MPEG.
also defined, but not for general use are
MPEG_mpeg2_LIBRARY, where to find the MPEG library.
MPEG_vo_LIBRARY, where to find the vo library.
FindMPI
Find a Message Passing Interface (MPI) implementation.
The Message Passing Interface (MPI) is a library used to write high-performance distrib‐
uted-memory parallel applications, and is typically deployed on a cluster. MPI is a stan‐
dard interface (defined by the MPI forum) for which many implementations are available.
Variables for using MPI
The module exposes the components C, CXX, MPICXX and Fortran. Each of these controls the
various MPI languages to search for. The difference between CXX and MPICXX is that CXX
refers to the MPI C API being usable from C++, whereas MPICXX refers to the MPI-2 C++ API
that was removed again in MPI-3.
Depending on the enabled components the following variables will be set:
MPI_FOUND
Variable indicating that MPI settings for all requested languages have been found.
If no components are specified, this is true if MPI settings for all enabled lan‐
guages were detected. Note that the MPICXX component does not affect this variable.
MPI_VERSION
Minimal version of MPI detected among the requested languages, or all enabled lan‐
guages if no components were specified.
This module will set the following variables per language in your project, where <lang> is
one of C, CXX, or Fortran:
MPI_<lang>_FOUND
Variable indicating the MPI settings for <lang> were found and that simple MPI test
programs compile with the provided settings.
MPI_<lang>_COMPILER
MPI compiler for <lang> if such a program exists.
MPI_<lang>_COMPILE_OPTIONS
Compilation options for MPI programs in <lang>, given as a ;-list.
MPI_<lang>_COMPILE_DEFINITIONS
Compilation definitions for MPI programs in <lang>, given as a ;-list.
MPI_<lang>_INCLUDE_DIRS
Include path(s) for MPI header.
MPI_<lang>_LINK_FLAGS
Linker flags for MPI programs.
MPI_<lang>_LIBRARIES
All libraries to link MPI programs against.
Additionally, the following IMPORTED targets are defined:
MPI::MPI_<lang>
Target for using MPI from <lang>.
The following variables indicating which bindings are present will be defined:
MPI_MPICXX_FOUND
Variable indicating whether the MPI-2 C++ bindings are present (introduced in
MPI-2, removed with MPI-3).
MPI_Fortran_HAVE_F77_HEADER
True if the Fortran 77 header mpif.h is available.
MPI_Fortran_HAVE_F90_MODULE
True if the Fortran 90 module mpi can be used for accessing MPI (MPI-2 and higher
only).
MPI_Fortran_HAVE_F08_MODULE
True if the Fortran 2008 mpi_f08 is available to MPI programs (MPI-3 and higher
only).
If possible, the MPI version will be determined by this module. The facilities to detect
the MPI version were introduced with MPI-1.2, and therefore cannot be found for older MPI
versions.
MPI_<lang>_VERSION_MAJOR
Major version of MPI implemented for <lang> by the MPI distribution.
MPI_<lang>_VERSION_MINOR
Minor version of MPI implemented for <lang> by the MPI distribution.
MPI_<lang>_VERSION
MPI version implemented for <lang> by the MPI distribution.
Note that there’s no variable for the C bindings being accessible through mpi.h, since the
MPI standards always have required this binding to work in both C and C++ code.
For running MPI programs, the module sets the following variables
MPIEXEC_EXECUTABLE
Executable for running MPI programs, if such exists.
MPIEXEC_NUMPROC_FLAG
Flag to pass to mpiexec before giving it the number of processors to run on.
MPIEXEC_MAX_NUMPROCS
Number of MPI processors to utilize. Defaults to the number of processors detected
on the host system.
MPIEXEC_PREFLAGS
Flags to pass to mpiexec directly before the executable to run.
MPIEXEC_POSTFLAGS
Flags to pass to mpiexec after other flags.
Variables for locating MPI
This module performs a three step search for an MPI implementation:
1. Check if the compiler has MPI support built-in. This is the case if the user passed a
compiler wrapper as CMAKE_<LANG>_COMPILER or if they’re on a Cray system.
2. Attempt to find an MPI compiler wrapper and determine the compiler information from it.
3. Try to find an MPI implementation that does not ship such a wrapper by guessing set‐
tings. Currently, only Microsoft MPI and MPICH2 on Windows are supported.
For controlling the second step, the following variables may be set:
MPI_<lang>_COMPILER
Search for the specified compiler wrapper and use it.
MPI_<lang>_COMPILER_FLAGS
Flags to pass to the MPI compiler wrapper during interrogation. Some compiler wrap‐
pers support linking debug or tracing libraries if a specific flag is passed and
this variable may be used to obtain them.
MPI_COMPILER_FLAGS
Used to initialize MPI_<lang>_COMPILER_FLAGS if no language specific flag has been
given. Empty by default.
MPI_EXECUTABLE_SUFFIX
A suffix which is appended to all names that are being looked for. For instance you
may set this to .mpich or .openmpi to prefer the one or the other on Debian and its
derivatives.
In order to control the guessing step, the following variable may be set:
MPI_GUESS_LIBRARY_NAME
Valid values are MSMPI and MPICH2. If set, only the given library will be searched
for. By default, MSMPI will be preferred over MPICH2 if both are available. This
also sets MPI_SKIP_COMPILER_WRAPPER to true, which may be overridden.
Each of the search steps may be skipped with the following control variables:
MPI_ASSUME_NO_BUILTIN_MPI
If true, the module assumes that the compiler itself does not provide an MPI imple‐
mentation and skips to step 2.
MPI_SKIP_COMPILER_WRAPPER
If true, no compiler wrapper will be searched for.
MPI_SKIP_GUESSING
If true, the guessing step will be skipped.
Additionally, the following control variable is available to change search behavior:
MPI_CXX_SKIP_MPICXX
Add some definitions that will disable the MPI-2 C++ bindings. Currently supported
are MPICH, Open MPI, Platform MPI and derivatives thereof, for example MVAPICH or
Intel MPI.
If the find procedure fails for a variable MPI_<lang>_WORKS, then the settings detected by
or passed to the module did not work and even a simple MPI test program failed to compile.
If all of these parameters were not sufficient to find the right MPI implementation, a
user may disable the entire autodetection process by specifying both a list of libraries
in MPI_<lang>_LIBRARIES and a list of include directories in MPI_<lang>_ADDI‐
TIONAL_INCLUDE_DIRS. Any other variable may be set in addition to these two. The module
will then validate the MPI settings and store the settings in the cache.
Cache variables for MPI
The variable MPI_<lang>_INCLUDE_DIRS will be assembled from the following variables. For
C and CXX:
MPI_<lang>_HEADER_DIR
Location of the mpi.h header on disk.
For Fortran:
MPI_Fortran_F77_HEADER_DIR
Location of the Fortran 77 header mpif.h, if it exists.
MPI_Fortran_MODULE_DIR
Location of the mpi or mpi_f08 modules, if available.
For all languages the following variables are additionally considered:
MPI_<lang>_ADDITIONAL_INCLUDE_DIRS
A ;-list of paths needed in addition to the normal include directories.
MPI_<include_name>_INCLUDE_DIR
Path variables for include folders referred to by <include_name>.
MPI_<lang>_ADDITIONAL_INCLUDE_VARS
A ;-list of <include_name> that will be added to the include locations of <lang>.
The variable MPI_<lang>_LIBRARIES will be assembled from the following variables:
MPI_<lib_name>_LIBRARY
The location of a library called <lib_name> for use with MPI.
MPI_<lang>_LIB_NAMES
A ;-list of <lib_name> that will be added to the include locations of <lang>.
Usage of mpiexec
When using MPIEXEC_EXECUTABLE to execute MPI applications, you should typically use all of
the MPIEXEC_EXECUTABLE flags as follows:
${MPIEXEC_EXECUTABLE} ${MPIEXEC_NUMPROC_FLAG} ${MPIEXEC_MAX_NUMPROCS}
${MPIEXEC_PREFLAGS} EXECUTABLE ${MPIEXEC_POSTFLAGS} ARGS
where EXECUTABLE is the MPI program, and ARGS are the arguments to pass to the MPI pro‐
gram.
Advanced variables for using MPI
The module can perform some advanced feature detections upon explicit request.
Important notice: The following checks cannot be performed without executing an MPI test
program. Consider the special considerations for the behavior of try_run() during cross
compilation. Moreover, running an MPI program can cause additional issues, like a fire‐
wall notification on some systems. You should only enable these detections if you abso‐
lutely need the information.
If the following variables are set to true, the respective search will be performed:
MPI_DETERMINE_Fortran_CAPABILITIES
Determine for all available Fortran bindings what the values of MPI_SUBARRAYS_SUP‐
PORTED and MPI_ASYNC_PROTECTS_NONBLOCKING are and make their values available as
MPI_Fortran_<binding>_SUBARRAYS and MPI_Fortran_<binding>_ASYNCPROT, where <bind‐
ing> is one of F77_HEADER, F90_MODULE and F08_MODULE.
MPI_DETERMINE_LIBRARY_VERSION
For each language, find the output of MPI_Get_library_version and make it available
as MPI_<lang>_LIBRARY_VERSION. This information is usually tied to the runtime
component of an MPI implementation and might differ depending on <lang>. Note that
the return value is entirely implementation defined. This information might be used
to identify the MPI vendor and for example pick the correct one of multiple third
party binaries that matches the MPI vendor.
Backward Compatibility
For backward compatibility with older versions of FindMPI, these variables are set, but
deprecated:
MPI_COMPILER MPI_LIBRARY MPI_EXTRA_LIBRARY
MPI_COMPILE_FLAGS MPI_INCLUDE_PATH MPI_LINK_FLAGS
MPI_LIBRARIES
In new projects, please use the MPI_<lang>_XXX equivalents. Additionally, the following
variables are deprecated:
MPI_<lang>_COMPILE_FLAGS
Use MPI_<lang>_COMPILE_OPTIONS and MPI_<lang>_COMPILE_DEFINITIONS instead.
MPI_<lang>_INCLUDE_PATH
For consumption use MPI_<lang>_INCLUDE_DIRS and for specifying folders use
MPI_<lang>_ADDITIONAL_INCLUDE_DIRS instead.
MPIEXEC
Use MPIEXEC_EXECUTABLE instead.
FindOpenACC
Detect OpenACC support by the compiler.
This module can be used to detect OpenACC support in a compiler. If the compiler supports
OpenACC, the flags required to compile with OpenACC support are returned in variables for
the different languages. Currently, only PGI, GNU and Cray compilers are supported.
Variables
This module will set the following variables per language in your project, where <lang> is
one of C, CXX, or Fortran:
OpenACC_<lang>_FOUND
Variable indicating if OpenACC support for <lang> was detected.
OpenACC_<lang>_FLAGS
OpenACC compiler flags for <lang>, separated by spaces.
The module will also try to provide the OpenACC version variables:
OpenACC_<lang>_SPEC_DATE
Date of the OpenACC specification implemented by the <lang> compiler.
OpenACC_<lang>_VERSION_MAJOR
Major version of OpenACC implemented by the <lang> compiler.
OpenACC_<lang>_VERSION_MINOR
Minor version of OpenACC implemented by the <lang> compiler.
OpenACC_<lang>_VERSION
OpenACC version implemented by the <lang> compiler.
The specification date is formatted as given in the OpenACC standard: yyyymm where yyyy
and mm represents the year and month of the OpenACC specification implemented by the
<lang> compiler.
Input Variables
OpenACC_ACCEL_TARGET=<target> If set, will the correct target accelerator flag set to the
<target> will be returned with OpenACC_<lang>_FLAGS.
FindOpenAL
Locate OpenAL This module defines OPENAL_LIBRARY OPENAL_FOUND, if false, do not try to
link to OpenAL OPENAL_INCLUDE_DIR, where to find the headers
$OPENALDIR is an environment variable that would correspond to the
Created by Eric Wing. This was influenced by the FindSDL.cmake module.
FindOpenCL
Try to find OpenCL
IMPORTED Targets
This module defines IMPORTED target OpenCL::OpenCL, if OpenCL has been found.
Result Variables
This module defines the following variables:
OpenCL_FOUND - True if OpenCL was found
OpenCL_INCLUDE_DIRS - include directories for OpenCL
OpenCL_LIBRARIES - link against this library to use OpenCL
OpenCL_VERSION_STRING - Highest supported OpenCL version (eg. 1.2)
OpenCL_VERSION_MAJOR - The major version of the OpenCL implementation
OpenCL_VERSION_MINOR - The minor version of the OpenCL implementation
The module will also define two cache variables:
OpenCL_INCLUDE_DIR - the OpenCL include directory
OpenCL_LIBRARY - the path to the OpenCL library
FindOpenGL
FindModule for OpenGL and GLU.
Optional COMPONENTS
This module respects several optional COMPONENTS: EGL, GLX, and OpenGL. There are corre‐
sponding import targets for each of these flags.
IMPORTED Targets
This module defines the IMPORTED targets:
OpenGL::GL
Defined to the platform-specific OpenGL libraries if the system has OpenGL.
OpenGL::OpenGL
Defined to libOpenGL if the system is GLVND-based. OpenGL::GL
OpenGL::GLU
Defined if the system has GLU.
OpenGL::GLX
Defined if the system has GLX.
OpenGL::EGL
Defined if the system has EGL.
Result Variables
This module sets the following variables:
OPENGL_FOUND
True, if the system has OpenGL and all components are found.
OPENGL_XMESA_FOUND
True, if the system has XMESA.
OPENGL_GLU_FOUND
True, if the system has GLU.
OpenGL_OpenGL_FOUND
True, if the system has an OpenGL library.
OpenGL_GLX_FOUND
True, if the system has GLX.
OpenGL_EGL_FOUND
True, if the system has EGL.
OPENGL_INCLUDE_DIR
Path to the OpenGL include directory.
OPENGL_EGL_INCLUDE_DIRS
Path to the EGL include directory.
OPENGL_LIBRARIES
Paths to the OpenGL library, windowing system libraries, and GLU libraries. On
Linux, this assumes GLX and is never correct for EGL-based targets. Clients are
encouraged to use the OpenGL::* import targets instead.
Cache variables
The following cache variables may also be set:
OPENGL_egl_LIBRARY
Path to the EGL library.
OPENGL_glu_LIBRARY
Path to the GLU library.
OPENGL_glx_LIBRARY
Path to the GLVND ‘GLX’ library.
OPENGL_opengl_LIBRARY
Path to the GLVND ‘OpenGL’ library
OPENGL_gl_LIBRARY
Path to the OpenGL library. New code should prefer the OpenGL::* import targets.
Linux-specific
Some Linux systems utilize GLVND as a new ABI for OpenGL. GLVND separates context
libraries from OpenGL itself; OpenGL lives in “libOpenGL”, and contexts are defined in
“libGLX” or “libEGL”. GLVND is currently the only way to get OpenGL 3+ functionality via
EGL in a manner portable across vendors. Projects may use GLVND explicitly with target
OpenGL::OpenGL and either OpenGL::GLX or OpenGL::EGL.
Projects may use the OpenGL::GL target (or OPENGL_LIBRARIES variable) to use legacy GL
interfaces. These will use the legacy GL library located by OPENGL_gl_LIBRARY, if avail‐
able. If OPENGL_gl_LIBRARY is empty or not found and GLVND is available, the OpenGL::GL
target will use GLVND OpenGL::OpenGL and OpenGL::GLX (and the OPENGL_LIBRARIES variable
will use the corresponding libraries). Thus, for non-EGL-based Linux targets, the
OpenGL::GL target is most portable.
A OpenGL_GL_PREFERENCE variable may be set to specify the preferred way to provide legacy
GL interfaces in case multiple choices are available. The value may be one of:
GLVND If the GLVND OpenGL and GLX libraries are available, prefer them. This forces
OPENGL_gl_LIBRARY to be empty. This is the default if components were requested
(since components correspond to GLVND libraries).
LEGACY Prefer to use the legacy libGL library, if available. This is the default if no
components were requested.
For EGL targets the client must rely on GLVND support on the user’s system. Linking
should use the OpenGL::OpenGL OpenGL::EGL targets. Using GLES* libraries is theoretically
possible in place of OpenGL::OpenGL, but this module does not currently support that; con‐
tributions welcome.
OPENGL_egl_LIBRARY and OPENGL_EGL_INCLUDE_DIRS are defined in the case of GLVND. For
non-GLVND Linux and other systems these are left undefined.
macOS-Specific
On OSX FindOpenGL defaults to using the framework version of OpenGL. People will have to
change the cache values of OPENGL_glu_LIBRARY and OPENGL_gl_LIBRARY to use OpenGL with X11
on OSX.
FindOpenMP
Finds OpenMP support
This module can be used to detect OpenMP support in a compiler. If the compiler supports
OpenMP, the flags required to compile with OpenMP support are returned in variables for
the different languages. The variables may be empty if the compiler does not need a spe‐
cial flag to support OpenMP.
Variables
The module exposes the components C, CXX, and Fortran. Each of these controls the various
languages to search OpenMP support for.
Depending on the enabled components the following variables will be set:
OpenMP_FOUND
Variable indicating that OpenMP flags for all requested languages have been found.
If no components are specified, this is true if OpenMP settings for all enabled
languages were detected.
OpenMP_VERSION
Minimal version of the OpenMP standard detected among the requested languages, or
all enabled languages if no components were specified.
This module will set the following variables per language in your project, where <lang> is
one of C, CXX, or Fortran:
OpenMP_<lang>_FOUND
Variable indicating if OpenMP support for <lang> was detected.
OpenMP_<lang>_FLAGS
OpenMP compiler flags for <lang>, separated by spaces.
For linking with OpenMP code written in <lang>, the following variables are provided:
OpenMP_<lang>_LIB_NAMES
;-list of libraries for OpenMP programs for <lang>.
OpenMP_<libname>_LIBRARY
Location of the individual libraries needed for OpenMP support in <lang>.
OpenMP_<lang>_LIBRARIES
A list of libraries needed to link with OpenMP code written in <lang>.
Additionally, the module provides IMPORTED targets:
OpenMP::OpenMP_<lang>
Target for using OpenMP from <lang>.
Specifically for Fortran, the module sets the following variables:
OpenMP_Fortran_HAVE_OMPLIB_HEADER
Boolean indicating if OpenMP is accessible through omp_lib.h.
OpenMP_Fortran_HAVE_OMPLIB_MODULE
Boolean indicating if OpenMP is accessible through the omp_lib Fortran module.
The module will also try to provide the OpenMP version variables:
OpenMP_<lang>_SPEC_DATE
Date of the OpenMP specification implemented by the <lang> compiler.
OpenMP_<lang>_VERSION_MAJOR
Major version of OpenMP implemented by the <lang> compiler.
OpenMP_<lang>_VERSION_MINOR
Minor version of OpenMP implemented by the <lang> compiler.
OpenMP_<lang>_VERSION
OpenMP version implemented by the <lang> compiler.
The specification date is formatted as given in the OpenMP standard: yyyymm where yyyy and
mm represents the year and month of the OpenMP specification implemented by the <lang>
compiler.
FindOpenSceneGraph
Find OpenSceneGraph
This module searches for the OpenSceneGraph core “osg” library as well as OpenThreads, and
whatever additional COMPONENTS (nodekits) that you specify.
See http://www.openscenegraph.org
NOTE: To use this module effectively you must either require CMake >= 2.6.3 with
cmake_minimum_required(VERSION 2.6.3) or download and place FindOpenThreads.cmake, Find‐
osg_functions.cmake, Findosg.cmake, and Find<etc>.cmake files into your CMAKE_MODULE_PATH.
----
This module accepts the following variables (note mixed case)
OpenSceneGraph_DEBUG - Enable debugging output
OpenSceneGraph_MARK_AS_ADVANCED - Mark cache variables as advanced
automatically
The following environment variables are also respected for finding the OSG and it’s vari‐
ous components. CMAKE_PREFIX_PATH can also be used for this (see find_library() CMake
documentation).
<MODULE>_DIR
(where MODULE is of the form “OSGVOLUME” and there is a FindosgVolume.cmake file)
OSG_DIR
OSGDIR
OSG_ROOT
[CMake 2.8.10]: The CMake variable OSG_DIR can now be used as well to influence detection,
instead of needing to specify an environment variable.
This module defines the following output variables:
OPENSCENEGRAPH_FOUND - Was the OSG and all of the specified components found?
OPENSCENEGRAPH_VERSION - The version of the OSG which was found
OPENSCENEGRAPH_INCLUDE_DIRS - Where to find the headers
OPENSCENEGRAPH_LIBRARIES - The OSG libraries
================================== Example Usage:
find_package(OpenSceneGraph 2.0.0 REQUIRED osgDB osgUtil)
# libOpenThreads & libosg automatically searched
include_directories(${OPENSCENEGRAPH_INCLUDE_DIRS})
add_executable(foo foo.cc)
target_link_libraries(foo ${OPENSCENEGRAPH_LIBRARIES})
FindOpenSSL
Find the OpenSSL encryption library.
Imported Targets
This module defines the following IMPORTED targets:
OpenSSL::SSL
The OpenSSL ssl library, if found.
OpenSSL::Crypto
The OpenSSL crypto library, if found.
Result Variables
This module will set the following variables in your project:
OPENSSL_FOUND
System has the OpenSSL library.
OPENSSL_INCLUDE_DIR
The OpenSSL include directory.
OPENSSL_CRYPTO_LIBRARY
The OpenSSL crypto library.
OPENSSL_SSL_LIBRARY
The OpenSSL SSL library.
OPENSSL_LIBRARIES
All OpenSSL libraries.
OPENSSL_VERSION
This is set to $major.$minor.$revision$patch (e.g. 0.9.8s).
Hints
Set OPENSSL_ROOT_DIR to the root directory of an OpenSSL installation. Set
OPENSSL_USE_STATIC_LIBS to TRUE to look for static libraries. Set OPENSSL_MSVC_STATIC_RT
set TRUE to choose the MT version of the lib.
FindOpenThreads
OpenThreads is a C++ based threading library. Its largest userbase seems to OpenScene‐
Graph so you might notice I accept OSGDIR as an environment path. I consider this part of
the Findosg* suite used to find OpenSceneGraph components. Each component is separate and
you must opt in to each module.
Locate OpenThreads This module defines OPENTHREADS_LIBRARY OPENTHREADS_FOUND, if false, do
not try to link to OpenThreads OPENTHREADS_INCLUDE_DIR, where to find the headers
$OPENTHREADS_DIR is an environment variable that would correspond to the ./configure –pre‐
fix=$OPENTHREADS_DIR used in building osg.
[CMake 2.8.10]: The CMake variables OPENTHREADS_DIR or OSG_DIR can now be used as well to
influence detection, instead of needing to specify an environment variable.
Created by Eric Wing.
FindosgAnimation
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgAnimation This module defines
OSGANIMATION_FOUND - Was osgAnimation found? OSGANIMATION_INCLUDE_DIR - Where to find the
headers OSGANIMATION_LIBRARIES - The libraries to link against for the OSG (use this)
OSGANIMATION_LIBRARY - The OSG library OSGANIMATION_LIBRARY_DEBUG - The OSG debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgDB
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgDB This module defines
OSGDB_FOUND - Was osgDB found? OSGDB_INCLUDE_DIR - Where to find the headers
OSGDB_LIBRARIES - The libraries to link against for the osgDB (use this)
OSGDB_LIBRARY - The osgDB library OSGDB_LIBRARY_DEBUG - The osgDB debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
Findosg_functions
This CMake file contains two macros to assist with searching for OSG libraries and nodek‐
its. Please see FindOpenSceneGraph.cmake for full documentation.
FindosgFX
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgFX This module defines
OSGFX_FOUND - Was osgFX found? OSGFX_INCLUDE_DIR - Where to find the headers
OSGFX_LIBRARIES - The libraries to link against for the osgFX (use this)
OSGFX_LIBRARY - The osgFX library OSGFX_LIBRARY_DEBUG - The osgFX debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgGA
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgGA This module defines
OSGGA_FOUND - Was osgGA found? OSGGA_INCLUDE_DIR - Where to find the headers
OSGGA_LIBRARIES - The libraries to link against for the osgGA (use this)
OSGGA_LIBRARY - The osgGA library OSGGA_LIBRARY_DEBUG - The osgGA debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgIntrospection
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgINTROSPECTION This module defines
OSGINTROSPECTION_FOUND - Was osgIntrospection found? OSGINTROSPECTION_INCLUDE_DIR - Where
to find the headers OSGINTROSPECTION_LIBRARIES - The libraries to link for osgIntrospec‐
tion (use this)
OSGINTROSPECTION_LIBRARY - The osgIntrospection library OSGINTROSPECTION_LIBRARY_DEBUG -
The osgIntrospection debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgManipulator
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgManipulator This module defines
OSGMANIPULATOR_FOUND - Was osgManipulator found? OSGMANIPULATOR_INCLUDE_DIR - Where to
find the headers OSGMANIPULATOR_LIBRARIES - The libraries to link for osgManipulator (use
this)
OSGMANIPULATOR_LIBRARY - The osgManipulator library OSGMANIPULATOR_LIBRARY_DEBUG - The
osgManipulator debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgParticle
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgParticle This module defines
OSGPARTICLE_FOUND - Was osgParticle found? OSGPARTICLE_INCLUDE_DIR - Where to find the
headers OSGPARTICLE_LIBRARIES - The libraries to link for osgParticle (use this)
OSGPARTICLE_LIBRARY - The osgParticle library OSGPARTICLE_LIBRARY_DEBUG - The osgParticle
debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgPresentation
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgPresentation This module defines
OSGPRESENTATION_FOUND - Was osgPresentation found? OSGPRESENTATION_INCLUDE_DIR - Where to
find the headers OSGPRESENTATION_LIBRARIES - The libraries to link for osgPresentation
(use this)
OSGPRESENTATION_LIBRARY - The osgPresentation library OSGPRESENTATION_LIBRARY_DEBUG - The
osgPresentation debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing. Modified to work with osgPresentation by Robert Osfield, January
2012.
FindosgProducer
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgProducer This module defines
OSGPRODUCER_FOUND - Was osgProducer found? OSGPRODUCER_INCLUDE_DIR - Where to find the
headers OSGPRODUCER_LIBRARIES - The libraries to link for osgProducer (use this)
OSGPRODUCER_LIBRARY - The osgProducer library OSGPRODUCER_LIBRARY_DEBUG - The osgProducer
debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgQt
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgQt This module defines
OSGQT_FOUND - Was osgQt found? OSGQT_INCLUDE_DIR - Where to find the headers
OSGQT_LIBRARIES - The libraries to link for osgQt (use this)
OSGQT_LIBRARY - The osgQt library OSGQT_LIBRARY_DEBUG - The osgQt debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing. Modified to work with osgQt by Robert Osfield, January 2012.
Findosg
NOTE: It is highly recommended that you use the new FindOpenSceneGraph.cmake introduced in
CMake 2.6.3 and not use this Find module directly.
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osg This module defines
OSG_FOUND - Was the Osg found? OSG_INCLUDE_DIR - Where to find the headers OSG_LIBRARIES -
The libraries to link against for the OSG (use this)
OSG_LIBRARY - The OSG library OSG_LIBRARY_DEBUG - The OSG debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgShadow
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgShadow This module defines
OSGSHADOW_FOUND - Was osgShadow found? OSGSHADOW_INCLUDE_DIR - Where to find the headers
OSGSHADOW_LIBRARIES - The libraries to link for osgShadow (use this)
OSGSHADOW_LIBRARY - The osgShadow library OSGSHADOW_LIBRARY_DEBUG - The osgShadow debug
library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgSim
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgSim This module defines
OSGSIM_FOUND - Was osgSim found? OSGSIM_INCLUDE_DIR - Where to find the headers
OSGSIM_LIBRARIES - The libraries to link for osgSim (use this)
OSGSIM_LIBRARY - The osgSim library OSGSIM_LIBRARY_DEBUG - The osgSim debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgTerrain
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgTerrain This module defines
OSGTERRAIN_FOUND - Was osgTerrain found? OSGTERRAIN_INCLUDE_DIR - Where to find the head‐
ers OSGTERRAIN_LIBRARIES - The libraries to link for osgTerrain (use this)
OSGTERRAIN_LIBRARY - The osgTerrain library OSGTERRAIN_LIBRARY_DEBUG - The osgTerrain
debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgText
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgText This module defines
OSGTEXT_FOUND - Was osgText found? OSGTEXT_INCLUDE_DIR - Where to find the headers OSG‐
TEXT_LIBRARIES - The libraries to link for osgText (use this)
OSGTEXT_LIBRARY - The osgText library OSGTEXT_LIBRARY_DEBUG - The osgText debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgUtil
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgUtil This module defines
OSGUTIL_FOUND - Was osgUtil found? OSGUTIL_INCLUDE_DIR - Where to find the headers
OSGUTIL_LIBRARIES - The libraries to link for osgUtil (use this)
OSGUTIL_LIBRARY - The osgUtil library OSGUTIL_LIBRARY_DEBUG - The osgUtil debug library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgViewer
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgViewer This module defines
OSGVIEWER_FOUND - Was osgViewer found? OSGVIEWER_INCLUDE_DIR - Where to find the headers
OSGVIEWER_LIBRARIES - The libraries to link for osgViewer (use this)
OSGVIEWER_LIBRARY - The osgViewer library OSGVIEWER_LIBRARY_DEBUG - The osgViewer debug
library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgVolume
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgVolume This module defines
OSGVOLUME_FOUND - Was osgVolume found? OSGVOLUME_INCLUDE_DIR - Where to find the headers
OSGVOLUME_LIBRARIES - The libraries to link for osgVolume (use this)
OSGVOLUME_LIBRARY - The osgVolume library OSGVOLUME_LIBRARY_DEBUG - The osgVolume debug
library
$OSGDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindosgWidget
This is part of the Findosg* suite used to find OpenSceneGraph components. Each component
is separate and you must opt in to each module. You must also opt into OpenGL and
OpenThreads (and Producer if needed) as these modules won’t do it for you. This is to
allow you control over your own system piece by piece in case you need to opt out of cer‐
tain components or change the Find behavior for a particular module (perhaps because the
default FindOpenGL.cmake module doesn’t work with your system as an example). If you want
to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake
instead of the Findosg*.cmake modules.
Locate osgWidget This module defines
OSGWIDGET_FOUND - Was osgWidget found? OSGWIDGET_INCLUDE_DIR - Where to find the headers
OSGWIDGET_LIBRARIES - The libraries to link for osgWidget (use this)
OSGWIDGET_LIBRARY - The osgWidget library OSGWIDGET_LIBRARY_DEBUG - The osgWidget debug
library
$OSGDIR is an environment variable that would correspond to the
FindosgWidget.cmake tweaked from Findosg* suite as created by Eric Wing.
FindPackageHandleStandardArgs
This module provides a function intended to be used in Find Modules implementing
find_package(<PackageName>) calls. It handles the REQUIRED, QUIET and version-related
arguments of find_package. It also sets the <PackageName>_FOUND variable. The package is
considered found if all variables listed contain valid results, e.g. valid filepaths.
find_package_handle_standard_args
There are two signatures:
find_package_handle_standard_args(<PackageName>
(DEFAULT_MSG|<custom-failure-message>)
<required-var>...
)
find_package_handle_standard_args(<PackageName>
[FOUND_VAR <result-var>]
[REQUIRED_VARS <required-var>...]
[VERSION_VAR <version-var>]
[HANDLE_COMPONENTS]
[CONFIG_MODE]
[FAIL_MESSAGE <custom-failure-message>]
)
The <PackageName>_FOUND variable will be set to TRUE if all the variables
<required-var>... are valid and any optional constraints are satisfied, and FALSE
otherwise. A success or failure message may be displayed based on the results and
on whether the REQUIRED and/or QUIET option was given to the find_package() call.
The options are:
(DEFAULT_MSG|<custom-failure-message>)
In the simple signature this specifies the failure message. Use DEFAULT_MSG
to ask for a default message to be computed (recommended). Not valid in the
full signature.
FOUND_VAR <result-var>
Obsolete. Specifies either <PackageName>_FOUND or <PACKAGENAME>_FOUND as
the result variable. This exists only for compatibility with older versions
of CMake and is now ignored. Result variables of both names are always set
for compatibility.
REQUIRED_VARS <required-var>...
Specify the variables which are required for this package. These may be
named in the generated failure message asking the user to set the missing
variable values. Therefore these should typically be cache entries such as
FOO_LIBRARY and not output variables like FOO_LIBRARIES.
VERSION_VAR <version-var>
Specify the name of a variable that holds the version of the package that
has been found. This version will be checked against the (potentially)
specified required version given to the find_package() call, including its
EXACT option. The default messages include information about the required
version and the version which has been actually found, both if the version
is ok or not.
HANDLE_COMPONENTS
Enable handling of package components. In this case, the command will
report which components have been found and which are missing, and the
<PackageName>_FOUND variable will be set to FALSE if any of the required
components (i.e. not the ones listed after the OPTIONAL_COMPONENTS option of
find_package()) are missing.
CONFIG_MODE
Specify that the calling find module is a wrapper around a call to
find_package(<PackageName> NO_MODULE). This implies a VERSION_VAR value of
<PackageName>_VERSION. The command will automatically check whether the
package configuration file was found.
FAIL_MESSAGE <custom-failure-message>
Specify a custom failure message instead of using the default generated mes‐
sage. Not recommended.
Example for the simple signature:
find_package_handle_standard_args(LibXml2 DEFAULT_MSG
LIBXML2_LIBRARY LIBXML2_INCLUDE_DIR)
The LibXml2 package is considered to be found if both LIBXML2_LIBRARY and
LIBXML2_INCLUDE_DIR are valid. Then also LibXml2_FOUND is set to TRUE. If it is not
found and REQUIRED was used, it fails with a message(FATAL_ERROR), independent whether
QUIET was used or not. If it is found, success will be reported, including the content of
the first <required-var>. On repeated CMake runs, the same message will not be printed
again.
Example for the full signature:
find_package_handle_standard_args(LibArchive
REQUIRED_VARS LibArchive_LIBRARY LibArchive_INCLUDE_DIR
VERSION_VAR LibArchive_VERSION)
In this case, the LibArchive package is considered to be found if both LibArchive_LIBRARY
and LibArchive_INCLUDE_DIR are valid. Also the version of LibArchive will be checked by
using the version contained in LibArchive_VERSION. Since no FAIL_MESSAGE is given, the
default messages will be printed.
Another example for the full signature:
find_package(Automoc4 QUIET NO_MODULE HINTS /opt/automoc4)
find_package_handle_standard_args(Automoc4 CONFIG_MODE)
In this case, a FindAutmoc4.cmake module wraps a call to find_package(Automoc4 NO_MODULE)
and adds an additional search directory for automoc4. Then the call to find_package_han‐
dle_standard_args produces a proper success/failure message.
FindPackageMessage
FIND_PACKAGE_MESSAGE(<name> “message for user” “find result details”)
This macro is intended to be used in FindXXX.cmake modules files. It will print a message
once for each unique find result. This is useful for telling the user where a package was
found. The first argument specifies the name (XXX) of the package. The second argument
specifies the message to display. The third argument lists details about the find result
so that if they change the message will be displayed again. The macro also obeys the
QUIET argument to the find_package command.
Example:
if(X11_FOUND)
FIND_PACKAGE_MESSAGE(X11 "Found X11: ${X11_X11_LIB}"
"[${X11_X11_LIB}][${X11_INCLUDE_DIR}]")
else()
...
endif()
FindPatch
The module defines the following variables:
Patch_EXECUTABLE
Path to patch command-line executable.
Patch_FOUND
True if the patch command-line executable was found.
The following IMPORTED targets are also defined:
Patch::patch
The command-line executable.
Example usage:
find_package(Patch)
if(Patch_FOUND)
message("Patch found: ${Patch_EXECUTABLE}")
endif()
FindPerlLibs
Find Perl libraries
This module finds if PERL is installed and determines where the include files and
libraries are. It also determines what the name of the library is. This code sets the
following variables:
PERLLIBS_FOUND = True if perl.h & libperl were found
PERL_INCLUDE_PATH = path to where perl.h is found
PERL_LIBRARY = path to libperl
PERL_EXECUTABLE = full path to the perl binary
The minimum required version of Perl can be specified using the standard syntax, e.g.
find_package(PerlLibs 6.0)
The following variables are also available if needed
(introduced after CMake 2.6.4)
PERL_SITESEARCH = path to the sitesearch install dir
PERL_SITELIB = path to the sitelib install directory
PERL_VENDORARCH = path to the vendor arch install directory
PERL_VENDORLIB = path to the vendor lib install directory
PERL_ARCHLIB = path to the arch lib install directory
PERL_PRIVLIB = path to the priv lib install directory
PERL_EXTRA_C_FLAGS = Compilation flags used to build perl
FindPerl
Find perl
this module looks for Perl
PERL_EXECUTABLE - the full path to perl
PERL_FOUND - If false, don't attempt to use perl.
PERL_VERSION_STRING - version of perl found (since CMake 2.8.8)
FindPHP4
Find PHP4
This module finds if PHP4 is installed and determines where the include files and
libraries are. It also determines what the name of the library is. This code sets the
following variables:
PHP4_INCLUDE_PATH = path to where php.h can be found
PHP4_EXECUTABLE = full path to the php4 binary
FindPhysFS
Locate PhysFS library This module defines PHYSFS_LIBRARY, the name of the library to link
against PHYSFS_FOUND, if false, do not try to link to PHYSFS PHYSFS_INCLUDE_DIR, where to
find physfs.h
$PHYSFSDIR is an environment variable that would correspond to the
Created by Eric Wing.
FindPike
Find Pike
This module finds if PIKE is installed and determines where the include files and
libraries are. It also determines what the name of the library is. This code sets the
following variables:
PIKE_INCLUDE_PATH = path to where program.h is found
PIKE_EXECUTABLE = full path to the pike binary
FindPkgConfig
A pkg-config module for CMake.
Finds the pkg-config executable and add the pkg_check_modules() and pkg_search_module()
commands.
In order to find the pkg-config executable, it uses the PKG_CONFIG_EXECUTABLE variable or
the PKG_CONFIG environment variable first.
pkg_get_variable
Retrieves the value of a variable from a package:
pkg_get_variable(<RESULT> <MODULE> <VARIABLE>)
If multiple values are returned variable will contain a ;-list.
For example:
pkg_get_variable(GI_GIRDIR gobject-introspection-1.0 girdir)
pkg_check_modules
Checks for all the given modules.
pkg_check_modules(<PREFIX> [REQUIRED] [QUIET]
[NO_CMAKE_PATH] [NO_CMAKE_ENVIRONMENT_PATH]
[IMPORTED_TARGET]
<MODULE> [<MODULE>]*)
When the REQUIRED argument was set, macros will fail with an error when module(s)
could not be found.
When the QUIET argument is set, no status messages will be printed.
By default, if CMAKE_MINIMUM_REQUIRED_VERSION is 3.1 or later, or if
PKG_CONFIG_USE_CMAKE_PREFIX_PATH is set, the CMAKE_PREFIX_PATH, CMAKE_FRAME‐
WORK_PATH, and CMAKE_APPBUNDLE_PATH cache and environment variables will be added
to pkg-config search path. The NO_CMAKE_PATH and NO_CMAKE_ENVIRONMENT_PATH argu‐
ments disable this behavior for the cache variables and the environment variables,
respectively. The IMPORTED_TARGET argument will create an imported target named
PkgConfig::<PREFIX>> that can be passed directly as an argument to tar‐
get_link_libraries().
It sets the following variables:
PKG_CONFIG_FOUND ... if pkg-config executable was found
PKG_CONFIG_EXECUTABLE ... pathname of the pkg-config program
PKG_CONFIG_VERSION_STRING ... the version of the pkg-config program found
(since CMake 2.8.8)
For the following variables two sets of values exist; first one is the common one
and has the given PREFIX. The second set contains flags which are given out when
pkg-config was called with the --static option.
<XPREFIX>_FOUND ... set to 1 if module(s) exist
<XPREFIX>_LIBRARIES ... only the libraries (w/o the '-l')
<XPREFIX>_LIBRARY_DIRS ... the paths of the libraries (w/o the '-L')
<XPREFIX>_LDFLAGS ... all required linker flags
<XPREFIX>_LDFLAGS_OTHER ... all other linker flags
<XPREFIX>_INCLUDE_DIRS ... the '-I' preprocessor flags (w/o the '-I')
<XPREFIX>_CFLAGS ... all required cflags
<XPREFIX>_CFLAGS_OTHER ... the other compiler flags
<XPREFIX> = <PREFIX> for common case
<XPREFIX> = <PREFIX>_STATIC for static linking
Every variable containing multiple values will be a ;-list.
There are some special variables whose prefix depends on the count of given mod‐
ules. When there is only one module, <PREFIX> stays unchanged. When there are
multiple modules, the prefix will be changed to <PREFIX>_<MODNAME>:
<XPREFIX>_VERSION ... version of the module
<XPREFIX>_PREFIX ... prefix-directory of the module
<XPREFIX>_INCLUDEDIR ... include-dir of the module
<XPREFIX>_LIBDIR ... lib-dir of the module
<XPREFIX> = <PREFIX> when |MODULES| == 1, else
<XPREFIX> = <PREFIX>_<MODNAME>
A <MODULE> parameter can have the following formats:
{MODNAME} ... matches any version
{MODNAME}>={VERSION} ... at least version <VERSION> is required
{MODNAME}={VERSION} ... exactly version <VERSION> is required
{MODNAME}<={VERSION} ... modules must not be newer than <VERSION>
Examples
pkg_check_modules (GLIB2 glib-2.0)
pkg_check_modules (GLIB2 glib-2.0>=2.10)
Requires at least version 2.10 of glib2 and defines e.g. GLIB2_VERSION=2.10.3
pkg_check_modules (FOO glib-2.0>=2.10 gtk+-2.0)
Requires both glib2 and gtk2, and defines e.g. FOO_glib-2.0_VERSION=2.10.3 and
FOO_gtk+-2.0_VERSION=2.8.20
pkg_check_modules (XRENDER REQUIRED xrender)
Defines for example:
XRENDER_LIBRARIES=Xrender;X11``
XRENDER_STATIC_LIBRARIES=Xrender;X11;pthread;Xau;Xdmcp
pkg_search_module
Same as pkg_check_modules(), but instead it checks for given modules and uses the
first working one.
pkg_search_module(<PREFIX> [REQUIRED] [QUIET]
[NO_CMAKE_PATH] [NO_CMAKE_ENVIRONMENT_PATH]
[IMPORTED_TARGET]
<MODULE> [<MODULE>]*)
Examples
pkg_search_module (BAR libxml-2.0 libxml2 libxml>=2)
PKG_CONFIG_EXECUTABLE
Path to the pkg-config executable.
PKG_CONFIG_USE_CMAKE_PREFIX_PATH
Whether pkg_check_modules() and pkg_search_module() should add the paths in
CMAKE_PREFIX_PATH, CMAKE_FRAMEWORK_PATH, and CMAKE_APPBUNDLE_PATH cache and envi‐
ronment variables to pkg-config search path.
If this variable is not set, this behavior is enabled by default if CMAKE_MINI‐
MUM_REQUIRED_VERSION is 3.1 or later, disabled otherwise.
FindPNG
Find libpng, the official reference library for the PNG image format.
Imported targets
This module defines the following IMPORTED target:
PNG::PNG
The libpng library, if found.
Result variables
This module will set the following variables in your project:
PNG_INCLUDE_DIRS
where to find png.h, etc.
PNG_LIBRARIES
the libraries to link against to use PNG.
PNG_DEFINITIONS
You should add_definitions(${PNG_DEFINITIONS}) before compiling code that includes
png library files.
PNG_FOUND
If false, do not try to use PNG.
PNG_VERSION_STRING
the version of the PNG library found (since CMake 2.8.8)
Obsolete variables
The following variables may also be set, for backwards compatibility:
PNG_LIBRARY
where to find the PNG library.
PNG_INCLUDE_DIR
where to find the PNG headers (same as PNG_INCLUDE_DIRS)
Since PNG depends on the ZLib compression library, none of the above will be defined
unless ZLib can be found.
FindPostgreSQL
Find the PostgreSQL installation.
This module defines
PostgreSQL_LIBRARIES - the PostgreSQL libraries needed for linking
PostgreSQL_INCLUDE_DIRS - the directories of the PostgreSQL headers
PostgreSQL_LIBRARY_DIRS - the link directories for PostgreSQL libraries
PostgreSQL_VERSION_STRING - the version of PostgreSQL found (since CMake 2.8.8)
FindProducer
Though Producer isn’t directly part of OpenSceneGraph, its primary user is OSG so I con‐
sider this part of the Findosg* suite used to find OpenSceneGraph components. You’ll
notice that I accept OSGDIR as an environment path.
Each component is separate and you must opt in to each module. You must also opt into
OpenGL (and OpenThreads?) as these modules won’t do it for you. This is to allow you con‐
trol over your own system piece by piece in case you need to opt out of certain components
or change the Find behavior for a particular module (perhaps because the default Find‐
OpenGL.cmake module doesn’t work with your system as an example). If you want to use a
more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead
of the Findosg*.cmake modules.
Locate Producer This module defines PRODUCER_LIBRARY PRODUCER_FOUND, if false, do not try
to link to Producer PRODUCER_INCLUDE_DIR, where to find the headers
$PRODUCER_DIR is an environment variable that would correspond to the
Created by Eric Wing.
FindProtobuf
Locate and configure the Google Protocol Buffers library.
The following variables can be set and are optional:
Protobuf_SRC_ROOT_FOLDER
When compiling with MSVC, if this cache variable is set the protobuf-default VS
project build locations (vsprojects/Debug and vsprojects/Release or vspro‐
jects/x64/Debug and vsprojects/x64/Release) will be searched for libraries and
binaries.
Protobuf_IMPORT_DIRS
List of additional directories to be searched for imported .proto files.
Protobuf_DEBUG
Show debug messages.
Protobuf_USE_STATIC_LIBS
Set to ON to force the use of the static libraries. Default is OFF.
Defines the following variables:
Protobuf_FOUND
Found the Google Protocol Buffers library (libprotobuf & header files)
Protobuf_VERSION
Version of package found.
Protobuf_INCLUDE_DIRS
Include directories for Google Protocol Buffers
Protobuf_LIBRARIES
The protobuf libraries
Protobuf_PROTOC_LIBRARIES
The protoc libraries
Protobuf_LITE_LIBRARIES
The protobuf-lite libraries
The following IMPORTED targets are also defined:
protobuf::libprotobuf
The protobuf library.
protobuf::libprotobuf-lite
The protobuf lite library.
protobuf::libprotoc
The protoc library.
protobuf::protoc
The protoc compiler.
The following cache variables are also available to set or use:
Protobuf_LIBRARY
The protobuf library
Protobuf_PROTOC_LIBRARY
The protoc library
Protobuf_INCLUDE_DIR
The include directory for protocol buffers
Protobuf_PROTOC_EXECUTABLE
The protoc compiler
Protobuf_LIBRARY_DEBUG
The protobuf library (debug)
Protobuf_PROTOC_LIBRARY_DEBUG
The protoc library (debug)
Protobuf_LITE_LIBRARY
The protobuf lite library
Protobuf_LITE_LIBRARY_DEBUG
The protobuf lite library (debug)
Example:
find_package(Protobuf REQUIRED)
include_directories(${Protobuf_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS foo.proto)
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS EXPORT_MACRO DLL_EXPORT foo.proto)
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS DESCRIPTORS PROTO_DESCS foo.proto)
protobuf_generate_python(PROTO_PY foo.proto)
add_executable(bar bar.cc ${PROTO_SRCS} ${PROTO_HDRS})
target_link_libraries(bar ${Protobuf_LIBRARIES})
NOTE:
The protobuf_generate_cpp and protobuf_generate_python functions and add_executable()
or add_library() calls only work properly within the same directory.
protobuf_generate_cpp
Add custom commands to process .proto files to C++:
protobuf_generate_cpp (<SRCS> <HDRS>
[DESCRIPTORS <DESC>] [EXPORT_MACRO <MACRO>] [<ARGN>...])
SRCS Variable to define with autogenerated source files
HDRS Variable to define with autogenerated header files
DESCRIPTORS
Variable to define with autogenerated descriptor files, if requested.
EXPORT_MACRO
is a macro which should expand to __declspec(dllexport) or
__declspec(dllimport) depending on what is being compiled.
ARGN .proto files
protobuf_generate_python
Add custom commands to process .proto files to Python:
protobuf_generate_python (<PY> [<ARGN>...])
PY Variable to define with autogenerated Python files
ARGN .proto filess
FindPythonInterp
Find python interpreter
This module finds if Python interpreter is installed and determines where the executables
are. This code sets the following variables:
PYTHONINTERP_FOUND - Was the Python executable found
PYTHON_EXECUTABLE - path to the Python interpreter
PYTHON_VERSION_STRING - Python version found e.g. 2.5.2
PYTHON_VERSION_MAJOR - Python major version found e.g. 2
PYTHON_VERSION_MINOR - Python minor version found e.g. 5
PYTHON_VERSION_PATCH - Python patch version found e.g. 2
The Python_ADDITIONAL_VERSIONS variable can be used to specify a list of version numbers
that should be taken into account when searching for Python. You need to set this vari‐
able before calling find_package(PythonInterp).
If calling both find_package(PythonInterp) and find_package(PythonLibs), call find_pack‐
age(PythonInterp) first to get the currently active Python version by default with a con‐
sistent version of PYTHON_LIBRARIES.
FindPythonLibs
Find python libraries
This module finds if Python is installed and determines where the include files and
libraries are. It also determines what the name of the library is. This code sets the
following variables:
PYTHONLIBS_FOUND - have the Python libs been found
PYTHON_LIBRARIES - path to the python library
PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated)
PYTHON_INCLUDE_DIRS - path to where Python.h is found
PYTHON_DEBUG_LIBRARIES - path to the debug library (deprecated)
PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8)
The Python_ADDITIONAL_VERSIONS variable can be used to specify a list of version numbers
that should be taken into account when searching for Python. You need to set this vari‐
able before calling find_package(PythonLibs).
If you’d like to specify the installation of Python to use, you should modify the follow‐
ing cache variables:
PYTHON_LIBRARY - path to the python library
PYTHON_INCLUDE_DIR - path to where Python.h is found
If calling both find_package(PythonInterp) and find_package(PythonLibs), call find_pack‐
age(PythonInterp) first to get the currently active Python version by default with a con‐
sistent version of PYTHON_LIBRARIES.
FindQt3
Locate Qt include paths and libraries
This module defines:
QT_INCLUDE_DIR - where to find qt.h, etc.
QT_LIBRARIES - the libraries to link against to use Qt.
QT_DEFINITIONS - definitions to use when
compiling code that uses Qt.
QT_FOUND - If false, don't try to use Qt.
QT_VERSION_STRING - the version of Qt found
If you need the multithreaded version of Qt, set QT_MT_REQUIRED to TRUE
Also defined, but not for general use are:
QT_MOC_EXECUTABLE, where to find the moc tool.
QT_UIC_EXECUTABLE, where to find the uic tool.
QT_QT_LIBRARY, where to find the Qt library.
QT_QTMAIN_LIBRARY, where to find the qtmain
library. This is only required by Qt3 on Windows.
FindQt4
Finding and Using Qt4
This module can be used to find Qt4. The most important issue is that the Qt4 qmake is
available via the system path. This qmake is then used to detect basically everything
else. This module defines a number of IMPORTED targets, macros and variables.
Typical usage could be something like:
set(CMAKE_AUTOMOC ON)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
find_package(Qt4 4.4.3 REQUIRED QtGui QtXml)
add_executable(myexe main.cpp)
target_link_libraries(myexe Qt4::QtGui Qt4::QtXml)
NOTE:
When using IMPORTED targets, the qtmain.lib static library is automatically linked on
Windows for WIN32 executables. To disable that globally, set the QT4_NO_LINK_QTMAIN
variable before finding Qt4. To disable that for a particular executable, set the
QT4_NO_LINK_QTMAIN target property to TRUE on the executable.
Qt Build Tools
Qt relies on some bundled tools for code generation, such as moc for meta-object code gen‐
eration,``uic`` for widget layout and population, and rcc for virtual filesystem content
generation. These tools may be automatically invoked by cmake(1) if the appropriate con‐
ditions are met. See cmake-qt(7) for more.
Qt Macros
In some cases it can be necessary or useful to invoke the Qt build tools in a more-manual
way. Several macros are available to add targets for such uses.
macro QT4_WRAP_CPP(outfiles inputfile ... [TARGET tgt] OPTIONS ...)
create moc code from a list of files containing Qt class with
the Q_OBJECT declaration. Per-directory preprocessor definitions
are also added. If the <tgt> is specified, the
INTERFACE_INCLUDE_DIRECTORIES and INTERFACE_COMPILE_DEFINITIONS from
the <tgt> are passed to moc. Options may be given to moc, such as
those found when executing "moc -help".
macro QT4_WRAP_UI(outfiles inputfile ... OPTIONS ...)
create code from a list of Qt designer ui files.
Options may be given to uic, such as those found
when executing "uic -help"
macro QT4_ADD_RESOURCES(outfiles inputfile ... OPTIONS ...)
create code from a list of Qt resource files.
Options may be given to rcc, such as those found
when executing "rcc -help"
macro QT4_GENERATE_MOC(inputfile outputfile [TARGET tgt])
creates a rule to run moc on infile and create outfile.
Use this if for some reason QT4_WRAP_CPP() isn't appropriate, e.g.
because you need a custom filename for the moc file or something
similar. If the <tgt> is specified, the
INTERFACE_INCLUDE_DIRECTORIES and INTERFACE_COMPILE_DEFINITIONS from
the <tgt> are passed to moc.
macro QT4_ADD_DBUS_INTERFACE(outfiles interface basename)
Create the interface header and implementation files with the
given basename from the given interface xml file and add it to
the list of sources.
You can pass additional parameters to the qdbusxml2cpp call by setting
properties on the input file:
INCLUDE the given file will be included in the generate interface header
CLASSNAME the generated class is named accordingly
NO_NAMESPACE the generated class is not wrapped in a namespace
macro QT4_ADD_DBUS_INTERFACES(outfiles inputfile ... )
Create the interface header and implementation files
for all listed interface xml files.
The basename will be automatically determined from the name
of the xml file.
The source file properties described for
QT4_ADD_DBUS_INTERFACE also apply here.
macro QT4_ADD_DBUS_ADAPTOR(outfiles xmlfile parentheader parentclassname
[basename] [classname])
create a dbus adaptor (header and implementation file) from the xml file
describing the interface, and add it to the list of sources. The adaptor
forwards the calls to a parent class, defined in parentheader and named
parentclassname. The name of the generated files will be
<basename>adaptor.{cpp,h} where basename defaults to the basename of the
xml file.
If <classname> is provided, then it will be used as the classname of the
adaptor itself.
macro QT4_GENERATE_DBUS_INTERFACE( header [interfacename] OPTIONS ...)
generate the xml interface file from the given header.
If the optional argument interfacename is omitted, the name of the
interface file is constructed from the basename of the header with
the suffix .xml appended.
Options may be given to qdbuscpp2xml, such as those found when
executing "qdbuscpp2xml --help"
macro QT4_CREATE_TRANSLATION( qm_files directories ... sources ...
ts_files ... OPTIONS ...)
out: qm_files
in: directories sources ts_files
options: flags to pass to lupdate, such as -extensions to specify
extensions for a directory scan.
generates commands to create .ts (vie lupdate) and .qm
(via lrelease) - files from directories and/or sources. The ts files are
created and/or updated in the source tree (unless given with full paths).
The qm files are generated in the build tree.
Updating the translations can be done by adding the qm_files
to the source list of your library/executable, so they are
always updated, or by adding a custom target to control when
they get updated/generated.
macro QT4_ADD_TRANSLATION( qm_files ts_files ... )
out: qm_files
in: ts_files
generates commands to create .qm from .ts - files. The generated
filenames can be found in qm_files. The ts_files
must exist and are not updated in any way.
macro QT4_AUTOMOC(sourcefile1 sourcefile2 ... [TARGET tgt])
The qt4_automoc macro is obsolete. Use the CMAKE_AUTOMOC feature instead.
This macro is still experimental.
It can be used to have moc automatically handled.
So if you have the files foo.h and foo.cpp, and in foo.h a
a class uses the Q_OBJECT macro, moc has to run on it. If you don't
want to use QT4_WRAP_CPP() (which is reliable and mature), you can insert
#include "foo.moc"
in foo.cpp and then give foo.cpp as argument to QT4_AUTOMOC(). This will
scan all listed files at cmake-time for such included moc files and if it
finds them cause a rule to be generated to run moc at build time on the
accompanying header file foo.h.
If a source file has the SKIP_AUTOMOC property set it will be ignored by
this macro.
If the <tgt> is specified, the INTERFACE_INCLUDE_DIRECTORIES and
INTERFACE_COMPILE_DEFINITIONS from the <tgt> are passed to moc.
function QT4_USE_MODULES( target [link_type] modules...)
This function is obsolete. Use target_link_libraries with IMPORTED targets
instead.
Make <target> use the <modules> from Qt. Using a Qt module means
to link to the library, add the relevant include directories for the
module, and add the relevant compiler defines for using the module.
Modules are roughly equivalent to components of Qt4, so usage would be
something like:
qt4_use_modules(myexe Core Gui Declarative)
to use QtCore, QtGui and QtDeclarative. The optional <link_type> argument
can be specified as either LINK_PUBLIC or LINK_PRIVATE to specify the
same argument to the target_link_libraries call.
IMPORTED Targets
A particular Qt library may be used by using the corresponding IMPORTED target with the
target_link_libraries() command:
target_link_libraries(myexe Qt4::QtGui Qt4::QtXml)
Using a target in this way causes :cmake(1)` to use the appropriate include directories
and compile definitions for the target when compiling myexe.
Targets are aware of their dependencies, so for example it is not necessary to list
Qt4::QtCore if another Qt library is listed, and it is not necessary to list Qt4::QtGui if
Qt4::QtDeclarative is listed. Targets may be tested for existence in the usual way with
the if(TARGET) command.
The Qt toolkit may contain both debug and release libraries. cmake(1) will choose the
appropriate version based on the build configuration.
Qt4::QtCore
The QtCore target
Qt4::QtGui
The QtGui target
Qt4::Qt3Support
The Qt3Support target
Qt4::QtAssistant
The QtAssistant target
Qt4::QtAssistantClient
The QtAssistantClient target
Qt4::QAxContainer
The QAxContainer target (Windows only)
Qt4::QAxServer
The QAxServer target (Windows only)
Qt4::QtDBus
The QtDBus target
Qt4::QtDeclarative
The QtDeclarative target
Qt4::QtDesigner
The QtDesigner target
Qt4::QtDesignerComponents
The QtDesignerComponents target
Qt4::QtHelp
The QtHelp target
Qt4::QtMotif
The QtMotif target
Qt4::QtMultimedia
The QtMultimedia target
Qt4::QtNetwork
The QtNetwork target
Qt4::QtNsPLugin
The QtNsPLugin target
Qt4::QtOpenGL
The QtOpenGL target
Qt4::QtScript
The QtScript target
Qt4::QtScriptTools
The QtScriptTools target
Qt4::QtSql
The QtSql target
Qt4::QtSvg
The QtSvg target
Qt4::QtTest
The QtTest target
Qt4::QtUiTools
The QtUiTools target
Qt4::QtWebKit
The QtWebKit target
Qt4::QtXml
The QtXml target
Qt4::QtXmlPatterns
The QtXmlPatterns target
Qt4::phonon
The phonon target
Result Variables
Below is a detailed list of variables that FindQt4.cmake sets.
Qt4_FOUND
If false, don’t try to use Qt 4.
QT_FOUND
If false, don’t try to use Qt. This variable is for compatibility only.
QT4_FOUND
If false, don’t try to use Qt 4. This variable is for compatibility only.
QT_VERSION_MAJOR
The major version of Qt found.
QT_VERSION_MINOR
The minor version of Qt found.
QT_VERSION_PATCH
The patch version of Qt found.
FindQt
Searches for all installed versions of Qt.
This should only be used if your project can work with multiple versions of Qt. If not,
you should just directly use FindQt4 or FindQt3. If multiple versions of Qt are found on
the machine, then The user must set the option DESIRED_QT_VERSION to the version they want
to use. If only one version of qt is found on the machine, then the DESIRED_QT_VERSION is
set to that version and the matching FindQt3 or FindQt4 module is included. Once the user
sets DESIRED_QT_VERSION, then the FindQt3 or FindQt4 module is included.
This module can only detect and switch between Qt versions 3 and 4. It cannot handle Qt5
or any later versions.
QT_REQUIRED if this is set to TRUE then if CMake can
not find Qt4 or Qt3 an error is raised
and a message is sent to the user.
DESIRED_QT_VERSION OPTION is created
QT4_INSTALLED is set to TRUE if qt4 is found.
QT3_INSTALLED is set to TRUE if qt3 is found.
FindQuickTime
Locate QuickTime This module defines QUICKTIME_LIBRARY QUICKTIME_FOUND, if false, do not
try to link to gdal QUICKTIME_INCLUDE_DIR, where to find the headers
$QUICKTIME_DIR is an environment variable that would correspond to the
Created by Eric Wing.
FindRTI
Try to find M&S HLA RTI libraries
This module finds if any HLA RTI is installed and locates the standard RTI include files
and libraries.
RTI is a simulation infrastructure standardized by IEEE and SISO. It has a well defined
C++ API that assures that simulation applications are independent on a particular RTI
implementation.
http://en.wikipedia.org/wiki/Run-Time_Infrastructure_(simulation)
This code sets the following variables:
RTI_INCLUDE_DIR = the directory where RTI includes file are found
RTI_LIBRARIES = The libraries to link against to use RTI
RTI_DEFINITIONS = -DRTI_USES_STD_FSTREAM
RTI_FOUND = Set to FALSE if any HLA RTI was not found
Report problems to <
@nongnu.org>
FindRuby
Find Ruby
This module finds if Ruby is installed and determines where the include files and
libraries are. Ruby 1.8, 1.9, 2.0 and 2.1 are supported.
The minimum required version of Ruby can be specified using the standard syntax, e.g.
find_package(Ruby 1.8)
It also determines what the name of the library is. This code sets the following vari‐
ables:
RUBY_EXECUTABLE
full path to the ruby binary
RUBY_INCLUDE_DIRS
include dirs to be used when using the ruby library
RUBY_LIBRARY
full path to the ruby library
RUBY_VERSION
the version of ruby which was found, e.g. “1.8.7”
RUBY_FOUND
set to true if ruby ws found successfully
Also:
RUBY_INCLUDE_PATH
same as RUBY_INCLUDE_DIRS, only provided for compatibility reasons, don’t use it
FindSDL_image
Locate SDL_image library
This module defines:
SDL_IMAGE_LIBRARIES, the name of the library to link against
SDL_IMAGE_INCLUDE_DIRS, where to find the headers
SDL_IMAGE_FOUND, if false, do not try to link against
SDL_IMAGE_VERSION_STRING - human-readable string containing the
version of SDL_image
For backward compatibility the following variables are also set:
SDLIMAGE_LIBRARY (same value as SDL_IMAGE_LIBRARIES)
SDLIMAGE_INCLUDE_DIR (same value as SDL_IMAGE_INCLUDE_DIRS)
SDLIMAGE_FOUND (same value as SDL_IMAGE_FOUND)
$SDLDIR is an environment variable that would correspond to the
Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifica‐
tions to recognize OS X frameworks and additional Unix paths (FreeBSD, etc).
FindSDL_mixer
Locate SDL_mixer library
This module defines:
SDL_MIXER_LIBRARIES, the name of the library to link against
SDL_MIXER_INCLUDE_DIRS, where to find the headers
SDL_MIXER_FOUND, if false, do not try to link against
SDL_MIXER_VERSION_STRING - human-readable string containing the
version of SDL_mixer
For backward compatibility the following variables are also set:
SDLMIXER_LIBRARY (same value as SDL_MIXER_LIBRARIES)
SDLMIXER_INCLUDE_DIR (same value as SDL_MIXER_INCLUDE_DIRS)
SDLMIXER_FOUND (same value as SDL_MIXER_FOUND)
$SDLDIR is an environment variable that would correspond to the
Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifica‐
tions to recognize OS X frameworks and additional Unix paths (FreeBSD, etc).
FindSDL_net
Locate SDL_net library
This module defines:
SDL_NET_LIBRARIES, the name of the library to link against
SDL_NET_INCLUDE_DIRS, where to find the headers
SDL_NET_FOUND, if false, do not try to link against
SDL_NET_VERSION_STRING - human-readable string containing the version of SDL_net
For backward compatibility the following variables are also set:
SDLNET_LIBRARY (same value as SDL_NET_LIBRARIES)
SDLNET_INCLUDE_DIR (same value as SDL_NET_INCLUDE_DIRS)
SDLNET_FOUND (same value as SDL_NET_FOUND)
$SDLDIR is an environment variable that would correspond to the
Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifica‐
tions to recognize OS X frameworks and additional Unix paths (FreeBSD, etc).
FindSDL
Locate SDL library
This module defines
SDL_LIBRARY, the name of the library to link against
SDL_FOUND, if false, do not try to link to SDL
SDL_INCLUDE_DIR, where to find SDL.h
SDL_VERSION_STRING, human-readable string containing the version of SDL
This module responds to the flag:
SDL_BUILDING_LIBRARY
If this is defined, then no SDL_main will be linked in because
only applications need main().
Otherwise, it is assumed you are building an application and this
module will attempt to locate and set the proper link flags
as part of the returned SDL_LIBRARY variable.
Don’t forget to include SDLmain.h and SDLmain.m your project for the OS X framework based
version. (Other versions link to -lSDLmain which this module will try to find on your
behalf.) Also for OS X, this module will automatically add the -framework Cocoa on your
behalf.
Additional Note: If you see an empty SDL_LIBRARY_TEMP in your configuration and no
SDL_LIBRARY, it means CMake did not find your SDL library (SDL.dll, libsdl.so, SDL.frame‐
work, etc). Set SDL_LIBRARY_TEMP to point to your SDL library, and configure again. Sim‐
ilarly, if you see an empty SDLMAIN_LIBRARY, you should set this value as appropriate.
These values are used to generate the final SDL_LIBRARY variable, but when these values
are unset, SDL_LIBRARY does not get created.
$SDLDIR is an environment variable that would correspond to the
Modified by Eric Wing. Added code to assist with automated building by using environmen‐
tal variables and providing a more controlled/consistent search behavior. Added new modi‐
fications to recognize OS X frameworks and additional Unix paths (FreeBSD, etc). Also
corrected the header search path to follow “proper” SDL guidelines. Added a search for
SDLmain which is needed by some platforms. Added a search for threads which is needed by
some platforms. Added needed compile switches for MinGW.
On OSX, this will prefer the Framework version (if found) over others. People will have
to manually change the cache values of SDL_LIBRARY to override this selection or set the
CMake environment CMAKE_INCLUDE_PATH to modify the search paths.
Note that the header path has changed from SDL/SDL.h to just SDL.h This needed to change
because “proper” SDL convention is #include “SDL.h”, not <SDL/SDL.h>. This is done for
portability reasons because not all systems place things in SDL/ (see FreeBSD).
FindSDL_sound
Locates the SDL_sound library
This module depends on SDL being found and must be called AFTER FindSDL.cmake is called.
This module defines
SDL_SOUND_INCLUDE_DIR, where to find SDL_sound.h
SDL_SOUND_FOUND, if false, do not try to link to SDL_sound
SDL_SOUND_LIBRARIES, this contains the list of libraries that you need
to link against.
SDL_SOUND_EXTRAS, this is an optional variable for you to add your own
flags to SDL_SOUND_LIBRARIES. This is prepended to SDL_SOUND_LIBRARIES.
This is available mostly for cases this module failed to anticipate for
and you must add additional flags. This is marked as ADVANCED.
SDL_SOUND_VERSION_STRING, human-readable string containing the
version of SDL_sound
This module also defines (but you shouldn’t need to use directly)
SDL_SOUND_LIBRARY, the name of just the SDL_sound library you would link
against. Use SDL_SOUND_LIBRARIES for you link instructions and not this one.
And might define the following as needed
MIKMOD_LIBRARY
MODPLUG_LIBRARY
OGG_LIBRARY
VORBIS_LIBRARY
SMPEG_LIBRARY
FLAC_LIBRARY
SPEEX_LIBRARY
Typically, you should not use these variables directly, and you should use
SDL_SOUND_LIBRARIES which contains SDL_SOUND_LIBRARY and the other audio libraries (if
needed) to successfully compile on your system.
Created by Eric Wing. This module is a bit more complicated than the other FindSDL* fam‐
ily modules. The reason is that SDL_sound can be compiled in a large variety of different
ways which are independent of platform. SDL_sound may dynamically link against other 3rd
party libraries to get additional codec support, such as Ogg Vorbis, SMPEG, ModPlug, Mik‐
Mod, FLAC, Speex, and potentially others. Under some circumstances which I don’t fully
understand, there seems to be a requirement that dependent libraries of libraries you use
must also be explicitly linked against in order to successfully compile. SDL_sound does
not currently have any system in place to know how it was compiled. So this CMake module
does the hard work in trying to discover which 3rd party libraries are required for build‐
ing (if any). This module uses a brute force approach to create a test program that uses
SDL_sound, and then tries to build it. If the build fails, it parses the error output for
known symbol names to figure out which libraries are needed.
Responds to the $SDLDIR and $SDLSOUNDDIR environmental variable that would correspond to
the ./configure –prefix=$SDLDIR used in building SDL.
On OSX, this will prefer the Framework version (if found) over others. People will have
to manually change the cache values of SDL_LIBRARY to override this selectionor set the
CMake environment CMAKE_INCLUDE_PATH to modify the search paths.
FindSDL_ttf
Locate SDL_ttf library
This module defines:
SDL_TTF_LIBRARIES, the name of the library to link against
SDL_TTF_INCLUDE_DIRS, where to find the headers
SDL_TTF_FOUND, if false, do not try to link against
SDL_TTF_VERSION_STRING - human-readable string containing the version of SDL_ttf
For backward compatibility the following variables are also set:
SDLTTF_LIBRARY (same value as SDL_TTF_LIBRARIES)
SDLTTF_INCLUDE_DIR (same value as SDL_TTF_INCLUDE_DIRS)
SDLTTF_FOUND (same value as SDL_TTF_FOUND)
$SDLDIR is an environment variable that would correspond to the
Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifica‐
tions to recognize OS X frameworks and additional Unix paths (FreeBSD, etc).
FindSelfPackers
Find upx
This module looks for some executable packers (i.e. software that compress executables or
shared libs into on-the-fly self-extracting executables or shared libs. Examples:
UPX: http://wildsau.idv.uni-linz.ac.at/mfx/upx.html
FindSquish
– Typical Use
This module can be used to find Squish. Currently Squish versions 3 and 4 are supported.
SQUISH_FOUND If false, don't try to use Squish
SQUISH_VERSION The full version of Squish found
SQUISH_VERSION_MAJOR The major version of Squish found
SQUISH_VERSION_MINOR The minor version of Squish found
SQUISH_VERSION_PATCH The patch version of Squish found
SQUISH_INSTALL_DIR The Squish installation directory
(containing bin, lib, etc)
SQUISH_SERVER_EXECUTABLE The squishserver executable
SQUISH_CLIENT_EXECUTABLE The squishrunner executable
SQUISH_INSTALL_DIR_FOUND Was the install directory found?
SQUISH_SERVER_EXECUTABLE_FOUND Was the server executable found?
SQUISH_CLIENT_EXECUTABLE_FOUND Was the client executable found?
It provides the function squish_v4_add_test() for adding a squish test to cmake using
Squish 4.x:
squish_v4_add_test(cmakeTestName
AUT targetName SUITE suiteName TEST squishTestName
[SETTINGSGROUP group] [PRE_COMMAND command] [POST_COMMAND command] )
The arguments have the following meaning:
cmakeTestName
this will be used as the first argument for add_test()
AUT targetName
the name of the cmake target which will be used as AUT, i.e. the executable which
will be tested.
SUITE suiteName
this is either the full path to the squish suite, or just the last directory of the
suite, i.e. the suite name. In this case the CMakeLists.txt which calls
squish_add_test() must be located in the parent directory of the suite directory.
TEST squishTestName
the name of the squish test, i.e. the name of the subdirectory of the test inside
the suite directory.
SETTINGSGROUP group
if specified, the given settings group will be used for executing the test. If not
specified, the groupname will be “CTest_<username>”
PRE_COMMAND command
if specified, the given command will be executed before starting the squish test.
POST_COMMAND command
same as PRE_COMMAND, but after the squish test has been executed.
enable_testing()
find_package(Squish 4.0)
if (SQUISH_FOUND)
squish_v4_add_test(myTestName
AUT myApp
SUITE ${CMAKE_SOURCE_DIR}/tests/mySuite
TEST someSquishTest
SETTINGSGROUP myGroup
)
endif ()
For users of Squish version 3.x the macro squish_v3_add_test() is provided:
squish_v3_add_test(testName applicationUnderTest testCase envVars testWrapper)
Use this macro to add a test using Squish 3.x.
enable_testing()
find_package(Squish)
if (SQUISH_FOUND)
squish_v3_add_test(myTestName myApplication testCase envVars testWrapper)
endif ()
macro SQUISH_ADD_TEST(testName applicationUnderTest testCase envVars testWrapper)
This is deprecated. Use SQUISH_V3_ADD_TEST() if you are using Squish 3.x instead.
FindSubversion
Extract information from a subversion working copy
The module defines the following variables:
Subversion_SVN_EXECUTABLE - path to svn command line client
Subversion_VERSION_SVN - version of svn command line client
Subversion_FOUND - true if the command line client was found
SUBVERSION_FOUND - same as Subversion_FOUND, set for compatibility reasons
The minimum required version of Subversion can be specified using the standard syntax,
e.g. find_package(Subversion 1.4)
If the command line client executable is found two macros are defined:
Subversion_WC_INFO(<dir> <var-prefix>)
Subversion_WC_LOG(<dir> <var-prefix>)
Subversion_WC_INFO extracts information of a subversion working copy at a given location.
This macro defines the following variables:
<var-prefix>_WC_URL - url of the repository (at <dir>)
<var-prefix>_WC_ROOT - root url of the repository
<var-prefix>_WC_REVISION - current revision
<var-prefix>_WC_LAST_CHANGED_AUTHOR - author of last commit
<var-prefix>_WC_LAST_CHANGED_DATE - date of last commit
<var-prefix>_WC_LAST_CHANGED_REV - revision of last commit
<var-prefix>_WC_INFO - output of command `svn info <dir>'
Subversion_WC_LOG retrieves the log message of the base revision of a subversion working
copy at a given location. This macro defines the variable:
<var-prefix>_LAST_CHANGED_LOG - last log of base revision
Example usage:
find_package(Subversion)
if(SUBVERSION_FOUND)
Subversion_WC_INFO(${PROJECT_SOURCE_DIR} Project)
message("Current revision is ${Project_WC_REVISION}")
Subversion_WC_LOG(${PROJECT_SOURCE_DIR} Project)
message("Last changed log is ${Project_LAST_CHANGED_LOG}")
endif()
FindSWIG
Find SWIG
This module finds an installed SWIG. It sets the following variables:
SWIG_FOUND - set to true if SWIG is found
SWIG_DIR - the directory where swig is installed
SWIG_EXECUTABLE - the path to the swig executable
SWIG_VERSION - the version number of the swig executable
The minimum required version of SWIG can be specified using the standard syntax, e.g.
find_package(SWIG 1.1)
All information is collected from the SWIG_EXECUTABLE so the version to be found can be
changed from the command line by means of setting SWIG_EXECUTABLE
FindTCL
TK_INTERNAL_PATH was removed.
This module finds if Tcl is installed and determines where the include files and libraries
are. It also determines what the name of the library is. This code sets the following
variables:
TCL_FOUND = Tcl was found
TK_FOUND = Tk was found
TCLTK_FOUND = Tcl and Tk were found
TCL_LIBRARY = path to Tcl library (tcl tcl80)
TCL_INCLUDE_PATH = path to where tcl.h can be found
TCL_TCLSH = path to tclsh binary (tcl tcl80)
TK_LIBRARY = path to Tk library (tk tk80 etc)
TK_INCLUDE_PATH = path to where tk.h can be found
TK_WISH = full path to the wish executable
In an effort to remove some clutter and clear up some issues for people who are not neces‐
sarily Tcl/Tk gurus/developpers, some variables were moved or removed. Changes compared
to CMake 2.4 are:
=> they were only useful for people writing Tcl/Tk extensions.
=> these libs are not packaged by default with Tcl/Tk distributions.
Even when Tcl/Tk is built from source, several flavors of debug libs
are created and there is no real reason to pick a single one
specifically (say, amongst tcl84g, tcl84gs, or tcl84sgx).
Let's leave that choice to the user by allowing him to assign
TCL_LIBRARY to any Tcl library, debug or not.
=> this ended up being only a Win32 variable, and there is a lot of
confusion regarding the location of this file in an installed Tcl/Tk
tree anyway (see 8.5 for example). If you need the internal path at
this point it is safer you ask directly where the *source* tree is
and dig from there.
FindTclsh
Find tclsh
This module finds if TCL is installed and determines where the include files and libraries
are. It also determines what the name of the library is. This code sets the following
variables:
TCLSH_FOUND = TRUE if tclsh has been found
TCL_TCLSH = the path to the tclsh executable
In cygwin, look for the cygwin version first. Don’t look for it later to avoid finding
the cygwin version on a Win32 build.
FindTclStub
TCL_STUB_LIBRARY_DEBUG and TK_STUB_LIBRARY_DEBUG were removed.
This module finds Tcl stub libraries. It first finds Tcl include files and libraries by
calling FindTCL.cmake. How to Use the Tcl Stubs Library:
http://tcl.activestate.com/doc/howto/stubs.html
Using Stub Libraries:
http://safari.oreilly.com/0130385603/ch48lev1sec3
This code sets the following variables:
TCL_STUB_LIBRARY = path to Tcl stub library
TK_STUB_LIBRARY = path to Tk stub library
TTK_STUB_LIBRARY = path to ttk stub library
In an effort to remove some clutter and clear up some issues for people who are not neces‐
sarily Tcl/Tk gurus/developpers, some variables were moved or removed. Changes compared
to CMake 2.4 are:
=> these libs are not packaged by default with Tcl/Tk distributions.
Even when Tcl/Tk is built from source, several flavors of debug libs
are created and there is no real reason to pick a single one
specifically (say, amongst tclstub84g, tclstub84gs, or tclstub84sgx).
Let's leave that choice to the user by allowing him to assign
TCL_STUB_LIBRARY to any Tcl library, debug or not.
FindThreads
This module determines the thread library of the system.
The following variables are set
CMAKE_THREAD_LIBS_INIT - the thread library
CMAKE_USE_SPROC_INIT - are we using sproc?
CMAKE_USE_WIN32_THREADS_INIT - using WIN32 threads?
CMAKE_USE_PTHREADS_INIT - are we using pthreads
CMAKE_HP_PTHREADS_INIT - are we using hp pthreads
The following import target is created
Threads::Threads
For systems with multiple thread libraries, caller can set
CMAKE_THREAD_PREFER_PTHREAD
If the use of the -pthread compiler and linker flag is preferred then the caller can set
THREADS_PREFER_PTHREAD_FLAG
Please note that the compiler flag can only be used with the imported target. Use of both
the imported target as well as this switch is highly recommended for new code.
FindTIFF
Find the TIFF library (libtiff).
Imported targets
This module defines the following IMPORTED targets:
TIFF::TIFF
The TIFF library, if found.
Result variables
This module will set the following variables in your project:
TIFF_FOUND
true if the TIFF headers and libraries were found
TIFF_INCLUDE_DIR
the directory containing the TIFF headers
TIFF_INCLUDE_DIRS
the directory containing the TIFF headers
TIFF_LIBRARIES
TIFF libraries to be linked
Cache variables
The following cache variables may also be set:
TIFF_INCLUDE_DIR
the directory containing the TIFF headers
TIFF_LIBRARY
the path to the TIFF library
FindUnixCommands
Find Unix commands, including the ones from Cygwin
This module looks for the Unix commands bash, cp, gzip, mv, rm, and tar and stores the
result in the variables BASH, CP, GZIP, MV, RM, and TAR.
FindVTK
This module no longer exists.
This module existed in versions of CMake prior to 3.1, but became only a thin wrapper
around find_package(VTK NO_MODULE) to provide compatibility for projects using long-out‐
dated conventions. Now find_package(VTK) will search for VTKConfig.cmake directly.
FindVulkan
Try to find Vulkan
IMPORTED Targets
This module defines IMPORTED target Vulkan::Vulkan, if Vulkan has been found.
Result Variables
This module defines the following variables:
Vulkan_FOUND - True if Vulkan was found
Vulkan_INCLUDE_DIRS - include directories for Vulkan
Vulkan_LIBRARIES - link against this library to use Vulkan
The module will also define two cache variables:
Vulkan_INCLUDE_DIR - the Vulkan include directory
Vulkan_LIBRARY - the path to the Vulkan library
FindWget
Find wget
This module looks for wget. This module defines the following values:
WGET_EXECUTABLE: the full path to the wget tool.
WGET_FOUND: True if wget has been found.
FindWish
Find wish installation
This module finds if TCL is installed and determines where the include files and libraries
are. It also determines what the name of the library is. This code sets the following
variables:
TK_WISH = the path to the wish executable
if UNIX is defined, then it will look for the cygwin version first
FindwxWidgets
Find a wxWidgets (a.k.a., wxWindows) installation.
This module finds if wxWidgets is installed and selects a default configuration to use.
wxWidgets is a modular library. To specify the modules that you will use, you need to
name them as components to the package:
find_package(wxWidgets COMPONENTS core base …)
There are two search branches: a windows style and a unix style. For windows, the follow‐
ing variables are searched for and set to defaults in case of multiple choices. Change
them if the defaults are not desired (i.e., these are the only variables you should change
to select a configuration):
wxWidgets_ROOT_DIR - Base wxWidgets directory
(e.g., C:/wxWidgets-2.6.3).
wxWidgets_LIB_DIR - Path to wxWidgets libraries
(e.g., C:/wxWidgets-2.6.3/lib/vc_lib).
wxWidgets_CONFIGURATION - Configuration to use
(e.g., msw, mswd, mswu, mswunivud, etc.)
wxWidgets_EXCLUDE_COMMON_LIBRARIES
- Set to TRUE to exclude linking of
commonly required libs (e.g., png tiff
jpeg zlib regex expat).
For unix style it uses the wx-config utility. You can select between debug/release, uni‐
code/ansi, universal/non-universal, and static/shared in the QtDialog or ccmake interfaces
by turning ON/OFF the following variables:
wxWidgets_USE_DEBUG
wxWidgets_USE_UNICODE
wxWidgets_USE_UNIVERSAL
wxWidgets_USE_STATIC
There is also a wxWidgets_CONFIG_OPTIONS variable for all other options that need to be
passed to the wx-config utility. For example, to use the base toolkit found in the
/usr/local path, set the variable (before calling the FIND_PACKAGE command) as such:
set(wxWidgets_CONFIG_OPTIONS --toolkit=base --prefix=/usr)
The following are set after the configuration is done for both windows and unix style:
wxWidgets_FOUND - Set to TRUE if wxWidgets was found.
wxWidgets_INCLUDE_DIRS - Include directories for WIN32
i.e., where to find "wx/wx.h" and
"wx/setup.h"; possibly empty for unices.
wxWidgets_LIBRARIES - Path to the wxWidgets libraries.
wxWidgets_LIBRARY_DIRS - compile time link dirs, useful for
rpath on UNIX. Typically an empty string
in WIN32 environment.
wxWidgets_DEFINITIONS - Contains defines required to compile/link
against WX, e.g. WXUSINGDLL
wxWidgets_DEFINITIONS_DEBUG- Contains defines required to compile/link
against WX debug builds, e.g. __WXDEBUG__
wxWidgets_CXX_FLAGS - Include dirs and compiler flags for
unices, empty on WIN32. Essentially
"`wx-config --cxxflags`".
wxWidgets_USE_FILE - Convenience include file.
Sample usage:
# Note that for MinGW users the order of libs is important!
find_package(wxWidgets COMPONENTS net gl core base)
if(wxWidgets_FOUND)
include(${wxWidgets_USE_FILE})
# and for each of your dependent executable/library targets:
target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES})
endif()
If wxWidgets is required (i.e., not an optional part):
find_package(wxWidgets REQUIRED net gl core base)
include(${wxWidgets_USE_FILE})
# and for each of your dependent executable/library targets:
target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES})
FindwxWindows
Find wxWindows (wxWidgets) installation
This module finds if wxWindows/wxWidgets is installed and determines where the include
files and libraries are. It also determines what the name of the library is. Please note
this file is DEPRECATED and replaced by FindwxWidgets.cmake. This code sets the following
variables:
WXWINDOWS_FOUND = system has WxWindows
WXWINDOWS_LIBRARIES = path to the wxWindows libraries
on Unix/Linux with additional
linker flags from
"wx-config --libs"
CMAKE_WXWINDOWS_CXX_FLAGS = Compiler flags for wxWindows,
essentially "`wx-config --cxxflags`"
on Linux
WXWINDOWS_INCLUDE_DIR = where to find "wx/wx.h" and "wx/setup.h"
WXWINDOWS_LINK_DIRECTORIES = link directories, useful for rpath on
Unix
WXWINDOWS_DEFINITIONS = extra defines
OPTIONS If you need OpenGL support please
set(WXWINDOWS_USE_GL 1)
in your CMakeLists.txt before you include this file.
HAVE_ISYSTEM - true required to replace -I by -isystem on g++
For convenience include Use_wxWindows.cmake in your project’s CMakeLists.txt using
include(${CMAKE_CURRENT_LIST_DIR}/Use_wxWindows.cmake).
USAGE
set(WXWINDOWS_USE_GL 1)
find_package(wxWindows)
NOTES wxWidgets 2.6.x is supported for monolithic builds e.g. compiled in wx/build/msw
dir as:
nmake -f makefile.vc BUILD=debug SHARED=0 USE_OPENGL=1 MONOLITHIC=1
DEPRECATED
CMAKE_WX_CAN_COMPILE
WXWINDOWS_LIBRARY
CMAKE_WX_CXX_FLAGS
WXWINDOWS_INCLUDE_PATH
AUTHOR Jan Woetzel <http://www.mip.informatik.uni-kiel.de/~jw> (07/2003-01/2006)
FindXCTest
Functions to help creating and executing XCTest bundles.
An XCTest bundle is a CFBundle with a special product-type and bundle extension. The Mac
Developer Library provides more information in the Testing with Xcode document.
Module Functions
xctest_add_bundle
The xctest_add_bundle function creates a XCTest bundle named <target> which will
test the target <testee>. Supported target types for testee are Frameworks and App
Bundles:
xctest_add_bundle(
<target> # Name of the XCTest bundle
<testee> # Target name of the testee
)
xctest_add_test
The xctest_add_test function adds an XCTest bundle to the project to be run by
ctest(1). The test will be named <name> and tests <bundle>:
xctest_add_test(
<name> # Test name
<bundle> # Target name of XCTest bundle
)
Module Variables
The following variables are set by including this module:
XCTest_FOUND
True if the XCTest Framework and executable were found.
XCTest_EXECUTABLE
The path to the xctest command line tool used to execute XCTest bundles.
XCTest_INCLUDE_DIRS
The directory containing the XCTest Framework headers.
XCTest_LIBRARIES
The location of the XCTest Framework.
FindXalanC
Find the Apache Xalan-C++ XSL transform processor headers and libraries.
Imported targets
This module defines the following IMPORTED targets:
XalanC::XalanC
The Xalan-C++ xalan-c library, if found.
Result variables
This module will set the following variables in your project:
XalanC_FOUND
true if the Xalan headers and libraries were found
XalanC_VERSION
Xalan release version
XalanC_INCLUDE_DIRS
the directory containing the Xalan headers; note XercesC_INCLUDE_DIRS is also
required
XalanC_LIBRARIES
Xalan libraries to be linked; note XercesC_LIBRARIES is also required
Cache variables
The following cache variables may also be set:
XalanC_INCLUDE_DIR
the directory containing the Xalan headers
XalanC_LIBRARY
the Xalan library
FindXercesC
Find the Apache Xerces-C++ validating XML parser headers and libraries.
Imported targets
This module defines the following IMPORTED targets:
XercesC::XercesC
The Xerces-C++ xerces-c library, if found.
Result variables
This module will set the following variables in your project:
XercesC_FOUND
true if the Xerces headers and libraries were found
XercesC_VERSION
Xerces release version
XercesC_INCLUDE_DIRS
the directory containing the Xerces headers
XercesC_LIBRARIES
Xerces libraries to be linked
Cache variables
The following cache variables may also be set:
XercesC_INCLUDE_DIR
the directory containing the Xerces headers
XercesC_LIBRARY
the Xerces library
FindX11
Find X11 installation
Try to find X11 on UNIX systems. The following values are defined
X11_FOUND - True if X11 is available
X11_INCLUDE_DIR - include directories to use X11
X11_LIBRARIES - link against these to use X11
and also the following more fine grained variables:
X11_ICE_INCLUDE_PATH, X11_ICE_LIB, X11_ICE_FOUND
X11_SM_INCLUDE_PATH, X11_SM_LIB, X11_SM_FOUND
X11_X11_INCLUDE_PATH, X11_X11_LIB
X11_Xaccessrules_INCLUDE_PATH, X11_Xaccess_FOUND
X11_Xaccessstr_INCLUDE_PATH, X11_Xaccess_FOUND
X11_Xau_INCLUDE_PATH, X11_Xau_LIB, X11_Xau_FOUND
X11_Xcomposite_INCLUDE_PATH, X11_Xcomposite_LIB, X11_Xcomposite_FOUND
X11_Xcursor_INCLUDE_PATH, X11_Xcursor_LIB, X11_Xcursor_FOUND
X11_Xdamage_INCLUDE_PATH, X11_Xdamage_LIB, X11_Xdamage_FOUND
X11_Xdmcp_INCLUDE_PATH, X11_Xdmcp_LIB, X11_Xdmcp_FOUND
X11_Xext_LIB, X11_Xext_FOUND
X11_dpms_INCLUDE_PATH, (in X11_Xext_LIB), X11_dpms_FOUND
X11_XShm_INCLUDE_PATH, (in X11_Xext_LIB), X11_XShm_FOUND
X11_Xshape_INCLUDE_PATH, (in X11_Xext_LIB), X11_Xshape_FOUND
X11_xf86misc_INCLUDE_PATH, X11_Xxf86misc_LIB, X11_xf86misc_FOUND
X11_xf86vmode_INCLUDE_PATH, X11_Xxf86vm_LIB X11_xf86vmode_FOUND
X11_Xfixes_INCLUDE_PATH, X11_Xfixes_LIB, X11_Xfixes_FOUND
X11_Xft_INCLUDE_PATH, X11_Xft_LIB, X11_Xft_FOUND
X11_Xi_INCLUDE_PATH, X11_Xi_LIB, X11_Xi_FOUND
X11_Xinerama_INCLUDE_PATH, X11_Xinerama_LIB, X11_Xinerama_FOUND
X11_Xinput_INCLUDE_PATH, X11_Xinput_LIB, X11_Xinput_FOUND
X11_Xkb_INCLUDE_PATH, X11_Xkb_FOUND
X11_Xkblib_INCLUDE_PATH, X11_Xkb_FOUND
X11_Xkbfile_INCLUDE_PATH, X11_Xkbfile_LIB, X11_Xkbfile_FOUND
X11_Xmu_INCLUDE_PATH, X11_Xmu_LIB, X11_Xmu_FOUND
X11_Xpm_INCLUDE_PATH, X11_Xpm_LIB, X11_Xpm_FOUND
X11_XTest_INCLUDE_PATH, X11_XTest_LIB, X11_XTest_FOUND
X11_Xrandr_INCLUDE_PATH, X11_Xrandr_LIB, X11_Xrandr_FOUND
X11_Xrender_INCLUDE_PATH, X11_Xrender_LIB, X11_Xrender_FOUND
X11_Xscreensaver_INCLUDE_PATH, X11_Xscreensaver_LIB, X11_Xscreensaver_FOUND
X11_Xt_INCLUDE_PATH, X11_Xt_LIB, X11_Xt_FOUND
X11_Xutil_INCLUDE_PATH, X11_Xutil_FOUND
X11_Xv_INCLUDE_PATH, X11_Xv_LIB, X11_Xv_FOUND
X11_XSync_INCLUDE_PATH, (in X11_Xext_LIB), X11_XSync_FOUND
FindXMLRPC
Find xmlrpc
Find the native XMLRPC headers and libraries.
XMLRPC_INCLUDE_DIRS - where to find xmlrpc.h, etc.
XMLRPC_LIBRARIES - List of libraries when using xmlrpc.
XMLRPC_FOUND - True if xmlrpc found.
XMLRPC modules may be specified as components for this find module. Modules may be listed
by running “xmlrpc-c-config”. Modules include:
c++ C++ wrapper code
libwww-client libwww-based client
cgi-server CGI-based server
abyss-server ABYSS-based server
Typical usage:
find_package(XMLRPC REQUIRED libwww-client)
FindZLIB
Find the native ZLIB includes and library.
IMPORTED Targets
This module defines IMPORTED target ZLIB::ZLIB, if ZLIB has been found.
Result Variables
This module defines the following variables:
ZLIB_INCLUDE_DIRS - where to find zlib.h, etc.
ZLIB_LIBRARIES - List of libraries when using zlib.
ZLIB_FOUND - True if zlib found.
ZLIB_VERSION_STRING - The version of zlib found (x.y.z)
ZLIB_VERSION_MAJOR - The major version of zlib
ZLIB_VERSION_MINOR - The minor version of zlib
ZLIB_VERSION_PATCH - The patch version of zlib
ZLIB_VERSION_TWEAK - The tweak version of zlib
Backward Compatibility
The following variable are provided for backward compatibility
ZLIB_MAJOR_VERSION - The major version of zlib
ZLIB_MINOR_VERSION - The minor version of zlib
ZLIB_PATCH_VERSION - The patch version of zlib
Hints
A user may set ZLIB_ROOT to a zlib installation root to tell this module where to look.
FortranCInterface
Fortran/C Interface Detection
This module automatically detects the API by which C and Fortran languages interact.
Module Variables
Variables that indicate if the mangling is found:
FortranCInterface_GLOBAL_FOUND
Global subroutines and functions.
FortranCInterface_MODULE_FOUND
Module subroutines and functions (declared by “MODULE PROCEDURE”).
This module also provides the following variables to specify the detected mangling, though
a typical use case does not need to reference them and can use the Module Functions below.
FortranCInterface_GLOBAL_PREFIX
Prefix for a global symbol without an underscore.
FortranCInterface_GLOBAL_SUFFIX
Suffix for a global symbol without an underscore.
FortranCInterface_GLOBAL_CASE
The case for a global symbol without an underscore, either UPPER or LOWER.
FortranCInterface_GLOBAL__PREFIX
Prefix for a global symbol with an underscore.
FortranCInterface_GLOBAL__SUFFIX
Suffix for a global symbol with an underscore.
FortranCInterface_GLOBAL__CASE
The case for a global symbol with an underscore, either UPPER or LOWER.
FortranCInterface_MODULE_PREFIX
Prefix for a module symbol without an underscore.
FortranCInterface_MODULE_MIDDLE
Middle of a module symbol without an underscore that appears between the name of
the module and the name of the symbol.
FortranCInterface_MODULE_SUFFIX
Suffix for a module symbol without an underscore.
FortranCInterface_MODULE_CASE
The case for a module symbol without an underscore, either UPPER or LOWER.
FortranCInterface_MODULE__PREFIX
Prefix for a module symbol with an underscore.
FortranCInterface_MODULE__MIDDLE
Middle of a module symbol with an underscore that appears between the name of the
module and the name of the symbol.
FortranCInterface_MODULE__SUFFIX
Suffix for a module symbol with an underscore.
FortranCInterface_MODULE__CASE
The case for a module symbol with an underscore, either UPPER or LOWER.
Module Functions
FortranCInterface_HEADER
The FortranCInterface_HEADER function is provided to generate a C header file con‐
taining macros to mangle symbol names:
FortranCInterface_HEADER(<file>
[MACRO_NAMESPACE <macro-ns>]
[SYMBOL_NAMESPACE <ns>]
[SYMBOLS [<module>:]<function> ...])
It generates in <file> definitions of the following macros:
#define FortranCInterface_GLOBAL (name,NAME) ...
#define FortranCInterface_GLOBAL_(name,NAME) ...
#define FortranCInterface_MODULE (mod,name, MOD,NAME) ...
#define FortranCInterface_MODULE_(mod,name, MOD,NAME) ...
These macros mangle four categories of Fortran symbols, respectively:
· Global symbols without ‘_’: call mysub()
· Global symbols with ‘_’ : call my_sub()
· Module symbols without ‘_’: use mymod; call mysub()
· Module symbols with ‘_’ : use mymod; call my_sub()
If mangling for a category is not known, its macro is left undefined. All macros
require raw names in both lower case and upper case.
The options are:
MACRO_NAMESPACE
Replace the default FortranCInterface_ prefix with a given namespace
<macro-ns>.
SYMBOLS
List symbols to mangle automatically with C preprocessor definitions:
<function> ==> #define <ns><function> ...
<module>:<function> ==> #define <ns><module>_<function> ...
If the mangling for some symbol is not known then no preprocessor definition
is created, and a warning is displayed.
SYMBOL_NAMESPACE
Prefix all preprocessor definitions generated by the SYMBOLS option with a
given namespace <ns>.
FortranCInterface_VERIFY
The FortranCInterface_VERIFY function is provided to verify that the Fortran and
C/C++ compilers work together:
FortranCInterface_VERIFY([CXX] [QUIET])
It tests whether a simple test executable using Fortran and C (and C++ when the CXX
option is given) compiles and links successfully. The result is stored in the
cache entry FortranCInterface_VERIFIED_C (or FortranCInterface_VERIFIED_CXX if CXX
is given) as a boolean. If the check fails and QUIET is not given the function
terminates with a fatal error message describing the problem. The purpose of this
check is to stop a build early for incompatible compiler combinations. The test is
built in the Release configuration.
Example Usage
include(FortranCInterface)
FortranCInterface_HEADER(FC.h MACRO_NAMESPACE "FC_")
This creates a “FC.h” header that defines mangling macros FC_GLOBAL(), FC_GLOBAL_(),
FC_MODULE(), and FC_MODULE_().
include(FortranCInterface)
FortranCInterface_HEADER(FCMangle.h
MACRO_NAMESPACE "FC_"
SYMBOL_NAMESPACE "FC_"
SYMBOLS mysub mymod:my_sub)
This creates a “FCMangle.h” header that defines the same FC_*() mangling macros as the
previous example plus preprocessor symbols FC_mysub and FC_mymod_my_sub.
Additional Manglings
FortranCInterface is aware of possible GLOBAL and MODULE manglings for many Fortran com‐
pilers, but it also provides an interface to specify new possible manglings. Set the
variables:
FortranCInterface_GLOBAL_SYMBOLS
FortranCInterface_MODULE_SYMBOLS
before including FortranCInterface to specify manglings of the symbols MySub, My_Sub,
MyModule:MySub, and My_Module:My_Sub. For example, the code:
set(FortranCInterface_GLOBAL_SYMBOLS mysub_ my_sub__ MYSUB_)
# ^^^^^ ^^^^^^ ^^^^^
set(FortranCInterface_MODULE_SYMBOLS
__mymodule_MOD_mysub __my_module_MOD_my_sub)
# ^^^^^^^^ ^^^^^ ^^^^^^^^^ ^^^^^^
include(FortranCInterface)
tells FortranCInterface to try given GLOBAL and MODULE manglings. (The carets point at
raw symbol names for clarity in this example but are not needed.)
GenerateExportHeader
Function for generation of export macros for libraries
This module provides the function GENERATE_EXPORT_HEADER().
The GENERATE_EXPORT_HEADER function can be used to generate a file suitable for preproces‐
sor inclusion which contains EXPORT macros to be used in library classes:
GENERATE_EXPORT_HEADER( LIBRARY_TARGET
[BASE_NAME <base_name>]
[EXPORT_MACRO_NAME <export_macro_name>]
[EXPORT_FILE_NAME <export_file_name>]
[DEPRECATED_MACRO_NAME <deprecated_macro_name>]
[NO_EXPORT_MACRO_NAME <no_export_macro_name>]
[STATIC_DEFINE <static_define>]
[NO_DEPRECATED_MACRO_NAME <no_deprecated_macro_name>]
[DEFINE_NO_DEPRECATED]
[PREFIX_NAME <prefix_name>]
[CUSTOM_CONTENT_FROM_VARIABLE <variable>]
)
The target properties CXX_VISIBILITY_PRESET and VISIBILITY_INLINES_HIDDEN can be used to
add the appropriate compile flags for targets. See the documentation of those target
properties, and the convenience variables CMAKE_CXX_VISIBILITY_PRESET and CMAKE_VISIBIL‐
ITY_INLINES_HIDDEN.
By default GENERATE_EXPORT_HEADER() generates macro names in a file name determined by the
name of the library. This means that in the simplest case, users of GenerateExportHeader
will be equivalent to:
set(CMAKE_CXX_VISIBILITY_PRESET hidden)
set(CMAKE_VISIBILITY_INLINES_HIDDEN 1)
add_library(somelib someclass.cpp)
generate_export_header(somelib)
install(TARGETS somelib DESTINATION ${LIBRARY_INSTALL_DIR})
install(FILES
someclass.h
${PROJECT_BINARY_DIR}/somelib_export.h DESTINATION ${INCLUDE_INSTALL_DIR}
)
And in the ABI header files:
#include "somelib_export.h"
class SOMELIB_EXPORT SomeClass {
...
};
The CMake fragment will generate a file in the ${CMAKE_CURRENT_BINARY_DIR} called
somelib_export.h containing the macros SOMELIB_EXPORT, SOMELIB_NO_EXPORT, SOMELIB_DEPRE‐
CATED, SOMELIB_DEPRECATED_EXPORT and SOMELIB_DEPRECATED_NO_EXPORT. They will be followed
by content taken from the variable specified by the CUSTOM_CONTENT_FROM_VARIABLE option,
if any. The resulting file should be installed with other headers in the library.
The BASE_NAME argument can be used to override the file name and the names used for the
macros:
add_library(somelib someclass.cpp)
generate_export_header(somelib
BASE_NAME other_name
)
Generates a file called other_name_export.h containing the macros OTHER_NAME_EXPORT,
OTHER_NAME_NO_EXPORT and OTHER_NAME_DEPRECATED etc.
The BASE_NAME may be overridden by specifying other options in the function. For example:
add_library(somelib someclass.cpp)
generate_export_header(somelib
EXPORT_MACRO_NAME OTHER_NAME_EXPORT
)
creates the macro OTHER_NAME_EXPORT instead of SOMELIB_EXPORT, but other macros and the
generated file name is as default:
add_library(somelib someclass.cpp)
generate_export_header(somelib
DEPRECATED_MACRO_NAME KDE_DEPRECATED
)
creates the macro KDE_DEPRECATED instead of SOMELIB_DEPRECATED.
If LIBRARY_TARGET is a static library, macros are defined without values.
If the same sources are used to create both a shared and a static library, the uppercased
symbol ${BASE_NAME}_STATIC_DEFINE should be used when building the static library:
add_library(shared_variant SHARED ${lib_SRCS})
add_library(static_variant ${lib_SRCS})
generate_export_header(shared_variant BASE_NAME libshared_and_static)
set_target_properties(static_variant PROPERTIES
COMPILE_FLAGS -DLIBSHARED_AND_STATIC_STATIC_DEFINE)
This will cause the export macros to expand to nothing when building the static library.
If DEFINE_NO_DEPRECATED is specified, then a macro ${BASE_NAME}_NO_DEPRECATED will be
defined This macro can be used to remove deprecated code from preprocessor output:
option(EXCLUDE_DEPRECATED "Exclude deprecated parts of the library" FALSE)
if (EXCLUDE_DEPRECATED)
set(NO_BUILD_DEPRECATED DEFINE_NO_DEPRECATED)
endif()
generate_export_header(somelib ${NO_BUILD_DEPRECATED})
And then in somelib:
class SOMELIB_EXPORT SomeClass
{
public:
#ifndef SOMELIB_NO_DEPRECATED
SOMELIB_DEPRECATED void oldMethod();
#endif
};
#ifndef SOMELIB_NO_DEPRECATED
void SomeClass::oldMethod() { }
#endif
If PREFIX_NAME is specified, the argument will be used as a prefix to all generated
macros.
For example:
generate_export_header(somelib PREFIX_NAME VTK_)
Generates the macros VTK_SOMELIB_EXPORT etc.
ADD_COMPILER_EXPORT_FLAGS( [<output_variable>] )
The ADD_COMPILER_EXPORT_FLAGS function adds -fvisibility=hidden to CMAKE_CXX_FLAGS if sup‐
ported, and is a no-op on Windows which does not need extra compiler flags for exporting
support. You may optionally pass a single argument to ADD_COMPILER_EXPORT_FLAGS that will
be populated with the CXX_FLAGS required to enable visibility support for the com‐
piler/architecture in use.
This function is deprecated. Set the target properties CXX_VISIBILITY_PRESET and VISIBIL‐
ITY_INLINES_HIDDEN instead.
GetPrerequisites
Functions to analyze and list executable file prerequisites.
This module provides functions to list the .dll, .dylib or .so files that an executable or
shared library file depends on. (Its prerequisites.)
It uses various tools to obtain the list of required shared library files:
dumpbin (Windows)
objdump (MinGW on Windows)
ldd (Linux/Unix)
otool (Mac OSX)
The following functions are provided by this module:
get_prerequisites
list_prerequisites
list_prerequisites_by_glob
gp_append_unique
is_file_executable
gp_item_default_embedded_path
(projects can override with gp_item_default_embedded_path_override)
gp_resolve_item
(projects can override with gp_resolve_item_override)
gp_resolved_file_type
(projects can override with gp_resolved_file_type_override)
gp_file_type
Requires CMake 2.6 or greater because it uses function, break, return and PARENT_SCOPE.
GET_PREREQUISITES(<target> <prerequisites_var> <exclude_system> <recurse>
<exepath> <dirs> [<rpaths>])
Get the list of shared library files required by <target>. The list in the variable named
<prerequisites_var> should be empty on first entry to this function. On exit, <prerequi‐
sites_var> will contain the list of required shared library files.
<target> is the full path to an executable file. <prerequisites_var> is the name of a
CMake variable to contain the results. <exclude_system> must be 0 or 1 indicating whether
to include or exclude “system” prerequisites. If <recurse> is set to 1 all prerequisites
will be found recursively, if set to 0 only direct prerequisites are listed. <exepath> is
the path to the top level executable used for @executable_path replacment on the Mac.
<dirs> is a list of paths where libraries might be found: these paths are searched first
when a target without any path info is given. Then standard system locations are also
searched: PATH, Framework locations, /usr/lib…
LIST_PREREQUISITES(<target> [<recurse> [<exclude_system> [<verbose>]]])
Print a message listing the prerequisites of <target>.
<target> is the name of a shared library or executable target or the full path to a shared
library or executable file. If <recurse> is set to 1 all prerequisites will be found
recursively, if set to 0 only direct prerequisites are listed. <exclude_system> must be 0
or 1 indicating whether to include or exclude “system” prerequisites. With <verbose> set
to 0 only the full path names of the prerequisites are printed, set to 1 extra informatin
will be displayed.
LIST_PREREQUISITES_BY_GLOB(<glob_arg> <glob_exp>)
Print the prerequisites of shared library and executable files matching a globbing pat‐
tern. <glob_arg> is GLOB or GLOB_RECURSE and <glob_exp> is a globbing expression used
with “file(GLOB” or “file(GLOB_RECURSE” to retrieve a list of matching files. If a match‐
ing file is executable, its prerequisites are listed.
Any additional (optional) arguments provided are passed along as the optional arguments to
the list_prerequisites calls.
GP_APPEND_UNIQUE(<list_var> <value>)
Append <value> to the list variable <list_var> only if the value is not already in the
list.
IS_FILE_EXECUTABLE(<file> <result_var>)
Return 1 in <result_var> if <file> is a binary executable, 0 otherwise.
GP_ITEM_DEFAULT_EMBEDDED_PATH(<item> <default_embedded_path_var>)
Return the path that others should refer to the item by when the item is embedded inside a
bundle.
Override on a per-project basis by providing a project-specific gp_item_default_embed‐
ded_path_override function.
GP_RESOLVE_ITEM(<context> <item> <exepath> <dirs> <resolved_item_var>
[<rpaths>])
Resolve an item into an existing full path file.
Override on a per-project basis by providing a project-specific gp_resolve_item_override
function.
GP_RESOLVED_FILE_TYPE(<original_file> <file> <exepath> <dirs> <type_var>
[<rpaths>])
Return the type of <file> with respect to <original_file>. String describing type of pre‐
requisite is returned in variable named <type_var>.
Use <exepath> and <dirs> if necessary to resolve non-absolute <file> values – but only for
non-embedded items.
Possible types are:
system
local
embedded
other
Override on a per-project basis by providing a project-specific
gp_resolved_file_type_override function.
GP_FILE_TYPE(<original_file> <file> <type_var>)
Return the type of <file> with respect to <original_file>. String describing type of pre‐
requisite is returned in variable named <type_var>.
Possible types are:
system
local
embedded
other
GNUInstallDirs
Define GNU standard installation directories
Provides install directory variables as defined by the GNU Coding Standards.
Result Variables
Inclusion of this module defines the following variables:
CMAKE_INSTALL_<dir>
Destination for files of a given type. This value may be passed to the DESTINATION
options of install() commands for the corresponding file type.
CMAKE_INSTALL_FULL_<dir>
The absolute path generated from the corresponding CMAKE_INSTALL_<dir> value. If the
value is not already an absolute path, an absolute path is constructed typically by
prepending the value of the CMAKE_INSTALL_PREFIX variable. However, there are some
special cases as documented below.
where <dir> is one of:
BINDIR user executables (bin)
SBINDIR
system admin executables (sbin)
LIBEXECDIR
program executables (libexec)
SYSCONFDIR
read-only single-machine data (etc)
SHAREDSTATEDIR
modifiable architecture-independent data (com)
LOCALSTATEDIR
modifiable single-machine data (var)
RUNSTATEDIR
run-time variable data (LOCALSTATEDIR/run)
LIBDIR object code libraries (lib or lib64 or lib/<multiarch-tuple> on Debian)
INCLUDEDIR
C header files (include)
OLDINCLUDEDIR
C header files for non-gcc (/usr/include)
DATAROOTDIR
read-only architecture-independent data root (share)
DATADIR
read-only architecture-independent data (DATAROOTDIR)
INFODIR
info documentation (DATAROOTDIR/info)
LOCALEDIR
locale-dependent data (DATAROOTDIR/locale)
MANDIR man documentation (DATAROOTDIR/man)
DOCDIR documentation root (DATAROOTDIR/doc/PROJECT_NAME)
If the includer does not define a value the above-shown default will be used and the value
will appear in the cache for editing by the user.
Special Cases
The following values of CMAKE_INSTALL_PREFIX are special:
/
For <dir> other than the SYSCONFDIR, LOCALSTATEDIR and RUNSTATEDIR, the value of
CMAKE_INSTALL_<dir> is prefixed with usr/ if it is not user-specified as an absolute
path. For example, the INCLUDEDIR value include becomes usr/include. This is required
by the GNU Coding Standards, which state:
When building the complete GNU system, the prefix will be empty and /usr will be a
symbolic link to /.
/usr
For <dir> equal to SYSCONFDIR, LOCALSTATEDIR or RUNSTATEDIR, the
CMAKE_INSTALL_FULL_<dir> is computed by prepending just / to the value of
CMAKE_INSTALL_<dir> if it is not user-specified as an absolute path. For example, the
SYSCONFDIR value etc becomes /etc. This is required by the GNU Coding Standards.
/opt/...
For <dir> equal to SYSCONFDIR, LOCALSTATEDIR or RUNSTATEDIR, the
CMAKE_INSTALL_FULL_<dir> is computed by appending the prefix to the value of
CMAKE_INSTALL_<dir> if it is not user-specified as an absolute path. For example, the
SYSCONFDIR value etc becomes /etc/opt/.... This is defined by the Filesystem Hierarchy
Standard.
Macros
GNUInstallDirs_get_absolute_install_dir
GNUInstallDirs_get_absolute_install_dir(absvar var)
Set the given variable absvar to the absolute path contained within the variable
var. This is to allow the computation of an absolute path, accounting for all the
special cases documented above. While this macro is used to compute the various
CMAKE_INSTALL_FULL_<dir> variables, it is exposed publicly to allow users who cre‐
ate additional path variables to also compute absolute paths where necessary, using
the same logic.
GoogleTest
This module defines functions to help use the Google Test infrastructure. Two mechanisms
for adding tests are provided. gtest_add_tests() has been around for some time, originally
via find_package(GTest). gtest_discover_tests() was introduced in CMake 3.10.
The (older) gtest_add_tests() scans source files to identify tests. This is usually
effective, with some caveats, including in cross-compiling environments, and makes setting
additional properties on tests more convenient. However, its handling of parameterized
tests is less comprehensive, and it requires re-running CMake to detect changes to the
list of tests.
The (newer) gtest_discover_tests() discovers tests by asking the compiled test executable
to enumerate its tests. This is more robust and provides better handling of parameterized
tests, and does not require CMake to be re-run when tests change. However, it may not
work in a cross-compiling environment, and setting test properties is less convenient.
More details can be found in the documentation of the respective functions.
Both commands are intended to replace use of add_test() to register tests, and will create
a separate CTest test for each Google Test test case. Note that this is in some cases
less efficient, as common set-up and tear-down logic cannot be shared by multiple test
cases executing in the same instance. However, it provides more fine-grained pass/fail
information to CTest, which is usually considered as more beneficial. By default, the
CTest test name is the same as the Google Test name (i.e. suite.testcase); see also
TEST_PREFIX and TEST_SUFFIX.
gtest_add_tests
Automatically add tests with CTest by scanning source code for Google Test macros:
gtest_add_tests(TARGET target
[SOURCES src1...]
[EXTRA_ARGS arg1...]
[WORKING_DIRECTORY dir]
[TEST_PREFIX prefix]
[TEST_SUFFIX suffix]
[SKIP_DEPENDENCY]
[TEST_LIST outVar]
)
gtest_add_tests attempts to identify tests by scanning source files. Although this
is generally effective, it uses only a basic regular expression match, which can be
defeated by atypical test declarations, and is unable to fully “split” parameter‐
ized tests. Additionally, it requires that CMake be re-run to discover any newly
added, removed or renamed tests (by default, this means that CMake is re-run when
any test source file is changed, but see SKIP_DEPENDENCY). However, it has the
advantage of declaring tests at CMake time, which somewhat simplifies setting addi‐
tional properties on tests, and always works in a cross-compiling environment.
The options are:
TARGET target
Specifies the Google Test executable, which must be a known CMake executable
target. CMake will substitute the location of the built executable when
running the test.
SOURCES src1...
When provided, only the listed files will be scanned for test cases. If
this option is not given, the SOURCES property of the specified target will
be used to obtain the list of sources.
EXTRA_ARGS arg1...
Any extra arguments to pass on the command line to each test case.
WORKING_DIRECTORY dir
Specifies the directory in which to run the discovered test cases. If this
option is not provided, the current binary directory is used.
TEST_PREFIX prefix
Specifies a prefix to be prepended to the name of each discovered test case.
This can be useful when the same source files are being used in multiple
calls to gtest_add_test() but with different EXTRA_ARGS.
TEST_SUFFIX suffix
Similar to TEST_PREFIX except the suffix is appended to the name of every
discovered test case. Both TEST_PREFIX and TEST_SUFFIX may be specified.
SKIP_DEPENDENCY
Normally, the function creates a dependency which will cause CMake to be
re-run if any of the sources being scanned are changed. This is to ensure
that the list of discovered tests is updated. If this behavior is not
desired (as may be the case while actually writing the test cases), this
option can be used to prevent the dependency from being added.
TEST_LIST outVar
The variable named by outVar will be populated in the calling scope with the
list of discovered test cases. This allows the caller to do things like
manipulate test properties of the discovered tests.
include(GoogleTest)
add_executable(FooTest FooUnitTest.cxx)
gtest_add_tests(TARGET FooTest
TEST_SUFFIX .noArgs
TEST_LIST noArgsTests
)
gtest_add_tests(TARGET FooTest
EXTRA_ARGS --someArg someValue
TEST_SUFFIX .withArgs
TEST_LIST withArgsTests
)
set_tests_properties(${noArgsTests} PROPERTIES TIMEOUT 10)
set_tests_properties(${withArgsTests} PROPERTIES TIMEOUT 20)
For backward compatibility, the following form is also supported:
gtest_add_tests(exe args files...)
exe The path to the test executable or the name of a CMake target.
args A ;-list of extra arguments to be passed to executable. The entire list
must be passed as a single argument. Enclose it in quotes, or pass "" for
no arguments.
files...
A list of source files to search for tests and test fixtures. Alterna‐
tively, use AUTO to specify that exe is the name of a CMake executable tar‐
get whose sources should be scanned.
include(GoogleTest)
set(FooTestArgs --foo 1 --bar 2)
add_executable(FooTest FooUnitTest.cxx)
gtest_add_tests(FooTest "${FooTestArgs}" AUTO)
gtest_discover_tests
Automatically add tests with CTest by querying the compiled test executable for
available tests:
gtest_discover_tests(target
[EXTRA_ARGS arg1...]
[WORKING_DIRECTORY dir]
[TEST_PREFIX prefix]
[TEST_SUFFIX suffix]
[NO_PRETTY_TYPES] [NO_PRETTY_VALUES]
[PROPERTIES name1 value1...]
[TEST_LIST var]
)
gtest_discover_tests sets up a post-build command on the test executable that gen‐
erates the list of tests by parsing the output from running the test with the
--gtest_list_tests argument. Compared to the source parsing approach of
gtest_add_tests(), this ensures that the full list of tests, including instantia‐
tions of parameterized tests, is obtained. Since test discovery occurs at build
time, it is not necessary to re-run CMake when the list of tests changes. However,
it requires that CROSSCOMPILING_EMULATOR is properly set in order to function in a
cross-compiling environment.
Additionally, setting properties on tests is somewhat less convenient, since the
tests are not available at CMake time. Additional test properties may be assigned
to the set of tests as a whole using the PROPERTIES option. If more fine-grained
test control is needed, custom content may be provided through an external CTest
script using the TEST_INCLUDE_FILES directory property. The set of discovered
tests is made accessible to such a script via the <target>_TESTS variable.
The options are:
target Specifies the Google Test executable, which must be a known CMake executable
target. CMake will substitute the location of the built executable when
running the test.
EXTRA_ARGS arg1...
Any extra arguments to pass on the command line to each test case.
WORKING_DIRECTORY dir
Specifies the directory in which to run the discovered test cases. If this
option is not provided, the current binary directory is used.
TEST_PREFIX prefix
Specifies a prefix to be prepended to the name of each discovered test case.
This can be useful when the same test executable is being used in multiple
calls to gtest_discover_tests() but with different EXTRA_ARGS.
TEST_SUFFIX suffix
Similar to TEST_PREFIX except the suffix is appended to the name of every
discovered test case. Both TEST_PREFIX and TEST_SUFFIX may be specified.
NO_PRETTY_TYPES
By default, the type index of type-parameterized tests is replaced by the
actual type name in the CTest test name. If this behavior is undesirable
(e.g. because the type names are unwieldy), this option will suppress this
behavior.
NO_PRETTY_VALUES
By default, the value index of value-parameterized tests is replaced by the
actual value in the CTest test name. If this behavior is undesirable (e.g.
because the value strings are unwieldy), this option will suppress this
behavior.
PROPERTIES name1 value1...
Specifies additional properties to be set on all tests discovered by this
invocation of gtest_discover_tests.
TEST_LIST var
Make the list of tests available in the variable var, rather than the
default <target>_TESTS. This can be useful when the same test executable is
being used in multiple calls to gtest_discover_tests(). Note that this
variable is only available in CTest.
TIMEOUT num
Specifies how long (in seconds) CMake will wait for the test to enumerate
available tests. If the test takes longer than this, discovery (and your
build) will fail. Most test executables will enumerate their tests very
quickly, but under some exceptional circumstances, a test may require a
longer timeout. The default is 5. See also the TIMEOUT option of exe‐
cute_process().
InstallRequiredSystemLibraries
Include this module to search for compiler-provided system runtime libraries and add
install rules for them. Some optional variables may be set prior to including the module
to adjust behavior:
CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS
Specify additional runtime libraries that may not be detected. After inclusion any
detected libraries will be appended to this.
CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_SKIP
Set to TRUE to skip calling the install(PROGRAMS) command to allow the includer to
specify its own install rule, using the value of CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS
to get the list of libraries.
CMAKE_INSTALL_DEBUG_LIBRARIES
Set to TRUE to install the debug runtime libraries when available with MSVC tools.
CMAKE_INSTALL_DEBUG_LIBRARIES_ONLY
Set to TRUE to install only the debug runtime libraries with MSVC tools even if the
release runtime libraries are also available.
CMAKE_INSTALL_UCRT_LIBRARIES
Set to TRUE to install the Windows Universal CRT libraries for app-local deployment
(e.g. to Windows XP). This is meaningful only with MSVC from Visual Studio 2015 or
higher.
One may set a CMAKE_WINDOWS_KITS_10_DIR environment variable to an absolute path to
tell CMake to look for Windows 10 SDKs in a custom location. The specified direc‐
tory is expected to contain Redist/ucrt/DLLs/* directories.
CMAKE_INSTALL_MFC_LIBRARIES
Set to TRUE to install the MSVC MFC runtime libraries.
CMAKE_INSTALL_OPENMP_LIBRARIES
Set to TRUE to install the MSVC OpenMP runtime libraries
CMAKE_INSTALL_SYSTEM_RUNTIME_DESTINATION
Specify the install(PROGRAMS) command DESTINATION option. If not specified, the
default is bin on Windows and lib elsewhere.
CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_NO_WARNINGS
Set to TRUE to disable warnings about required library files that do not exist.
(For example, Visual Studio Express editions may not provide the redistributable
files.)
CMAKE_INSTALL_SYSTEM_RUNTIME_COMPONENT
Specify the install(PROGRAMS) command COMPONENT option. If not specified, no such
option will be used.
MacroAddFileDependencies
MACRO_ADD_FILE_DEPENDENCIES(<_file> depend_files…)
Using the macro MACRO_ADD_FILE_DEPENDENCIES() is discouraged. There are usually better
ways to specify the correct dependencies.
MACRO_ADD_FILE_DEPENDENCIES(<_file> depend_files…) is just a convenience wrapper around
the OBJECT_DEPENDS source file property. You can just use set_property(SOURCE <file>
APPEND PROPERTY OBJECT_DEPENDS depend_files) instead.
ProcessorCount
ProcessorCount(var)
Determine the number of processors/cores and save value in ${var}
Sets the variable named ${var} to the number of physical cores available on the machine if
the information can be determined. Otherwise it is set to 0. Currently this functional‐
ity is implemented for AIX, cygwin, FreeBSD, HPUX, IRIX, Linux, Mac OS X, QNX, Sun and
Windows.
This function is guaranteed to return a positive integer (>=1) if it succeeds. It returns
0 if there’s a problem determining the processor count.
Example use, in a ctest -S dashboard script:
include(ProcessorCount)
ProcessorCount(N)
if(NOT N EQUAL 0)
set(CTEST_BUILD_FLAGS -j${N})
set(ctest_test_args ${ctest_test_args} PARALLEL_LEVEL ${N})
endif()
This function is intended to offer an approximation of the value of the number of compute
cores available on the current machine, such that you may use that value for parallel
building and parallel testing. It is meant to help utilize as much of the machine as
seems reasonable. Of course, knowledge of what else might be running on the machine
simultaneously should be used when deciding whether to request a machine’s full capacity
all for yourself.
SelectLibraryConfigurations
select_library_configurations( basename )
This macro takes a library base name as an argument, and will choose good values for base‐
name_LIBRARY, basename_LIBRARIES, basename_LIBRARY_DEBUG, and basename_LIBRARY_RELEASE
depending on what has been found and set. If only basename_LIBRARY_RELEASE is defined,
basename_LIBRARY will be set to the release value, and basename_LIBRARY_DEBUG will be set
to basename_LIBRARY_DEBUG-NOTFOUND. If only basename_LIBRARY_DEBUG is defined, then base‐
name_LIBRARY will take the debug value, and basename_LIBRARY_RELEASE will be set to base‐
name_LIBRARY_RELEASE-NOTFOUND.
If the generator supports configuration types, then basename_LIBRARY and base‐
name_LIBRARIES will be set with debug and optimized flags specifying the library to be
used for the given configuration. If no build type has been set or the generator in use
does not support configuration types, then basename_LIBRARY and basename_LIBRARIES will
take only the release value, or the debug value if the release one is not set.
SquishTestScript
This script launches a GUI test using Squish. You should not call the script directly;
instead, you should access it via the SQUISH_ADD_TEST macro that is defined in Find‐
Squish.cmake.
This script starts the Squish server, launches the test on the client, and finally stops
the squish server. If any of these steps fail (including if the tests do not pass) then a
fatal error is raised.
TestBigEndian
Define macro to determine endian type
Check if the system is big endian or little endian
TEST_BIG_ENDIAN(VARIABLE)
VARIABLE - variable to store the result to
TestCXXAcceptsFlag
Deprecated. See CheckCXXCompilerFlag.
Check if the CXX compiler accepts a flag.
CHECK_CXX_ACCEPTS_FLAG(<flags> <variable>)
<flags>
the flags to try
<variable>
variable to store the result
TestForANSIForScope
Check for ANSI for scope support
Check if the compiler restricts the scope of variables declared in a for-init-statement to
the loop body.
CMAKE_NO_ANSI_FOR_SCOPE - holds result
TestForANSIStreamHeaders
Test for compiler support of ANSI stream headers iostream, etc.
check if the compiler supports the standard ANSI iostream header (without the .h)
CMAKE_NO_ANSI_STREAM_HEADERS - defined by the results
TestForSSTREAM
Test for compiler support of ANSI sstream header
check if the compiler supports the standard ANSI sstream header
CMAKE_NO_ANSI_STRING_STREAM - defined by the results
TestForSTDNamespace
Test for std:: namespace support
check if the compiler supports std:: on stl classes
CMAKE_NO_STD_NAMESPACE - defined by the results
UseEcos
This module defines variables and macros required to build eCos application.
This file contains the following macros: ECOS_ADD_INCLUDE_DIRECTORIES() - add the eCos
include dirs ECOS_ADD_EXECUTABLE(name source1 … sourceN ) - create an eCos executable
ECOS_ADJUST_DIRECTORY(VAR source1 … sourceN ) - adjusts the path of the source files and
puts the result into VAR
Macros for selecting the toolchain: ECOS_USE_ARM_ELF_TOOLS() - enable the ARM ELF
toolchain for the directory where it is called ECOS_USE_I386_ELF_TOOLS() - enable the i386
ELF toolchain for the directory where it is called ECOS_USE_PPC_EABI_TOOLS() - enable the
PowerPC toolchain for the directory where it is called
It contains the following variables: ECOS_DEFINITIONS ECOSCONFIG_EXECUTABLE ECOS_CON‐
FIG_FILE - defaults to ecos.ecc, if your eCos configuration file has a different name,
adjust this variable for internal use only:
ECOS_ADD_TARGET_LIB
UseJavaClassFilelist
This script create a list of compiled Java class files to be added to a jar file. This
avoids including cmake files which get created in the binary directory.
UseJava
Use Module for Java
This file provides functions for Java. It is assumed that FindJava.cmake has already been
loaded. See FindJava.cmake for information on how to load Java into your CMake project.
add_jar(target_name
[SOURCES] source1 [source2 ...] [resource1 ...]
[INCLUDE_JARS jar1 [jar2 ...]]
[ENTRY_POINT entry]
[VERSION version]
[OUTPUT_NAME name]
[OUTPUT_DIR dir]
)
This command creates a <target_name>.jar. It compiles the given source files (source) and
adds the given resource files (resource) to the jar file. Source files can be java files
or listing files (prefixed by ‘@’). If only resource files are given then just a jar file
is created. The list of include jars are added to the classpath when compiling the java
sources and also to the dependencies of the target. INCLUDE_JARS also accepts other tar‐
get names created by add_jar. For backwards compatibility, jar files listed as sources
are ignored (as they have been since the first version of this module).
The default OUTPUT_DIR can also be changed by setting the variable CMAKE_JAVA_TARGET_OUT‐
PUT_DIR.
Additional instructions:
To add compile flags to the target you can set these flags with
the following variable:
set(CMAKE_JAVA_COMPILE_FLAGS -nowarn)
To add a path or a jar file to the class path you can do this
with the CMAKE_JAVA_INCLUDE_PATH variable.
set(CMAKE_JAVA_INCLUDE_PATH /usr/share/java/shibboleet.jar)
To use a different output name for the target you can set it with:
add_jar(foobar foobar.java OUTPUT_NAME shibboleet.jar)
To use a different output directory than CMAKE_CURRENT_BINARY_DIR
you can set it with:
add_jar(foobar foobar.java OUTPUT_DIR ${PROJECT_BINARY_DIR}/bin)
To define an entry point in your jar you can set it with the ENTRY_POINT
named argument:
add_jar(example ENTRY_POINT com/examples/MyProject/Main)
To define a custom manifest for the jar, you can set it with the manifest
named argument:
add_jar(example MANIFEST /path/to/manifest)
To add a VERSION to the target output name you can set it using
the VERSION named argument to add_jar. This will create a jar file with the
name shibboleet-1.0.0.jar and will create a symlink shibboleet.jar
pointing to the jar with the version information.
add_jar(shibboleet shibbotleet.java VERSION 1.2.0)
If the target is a JNI library, utilize the following commands to
create a JNI symbolic link:
set(CMAKE_JNI_TARGET TRUE)
add_jar(shibboleet shibbotleet.java VERSION 1.2.0)
install_jar(shibboleet ${LIB_INSTALL_DIR}/shibboleet)
install_jni_symlink(shibboleet ${JAVA_LIB_INSTALL_DIR})
If a single target needs to produce more than one jar from its
java source code, to prevent the accumulation of duplicate class
files in subsequent jars, set/reset CMAKE_JAR_CLASSES_PREFIX prior
to calling the add_jar() function:
set(CMAKE_JAR_CLASSES_PREFIX com/redhat/foo)
add_jar(foo foo.java)
set(CMAKE_JAR_CLASSES_PREFIX com/redhat/bar)
add_jar(bar bar.java)
Target Properties:
The add_jar() function sets some target properties. You can get these
properties with the
get_property(TARGET <target_name> PROPERTY <propery_name>)
command.
INSTALL_FILES The files which should be installed. This is used by
install_jar().
JNI_SYMLINK The JNI symlink which should be installed.
This is used by install_jni_symlink().
JAR_FILE The location of the jar file so that you can include
it.
CLASSDIR The directory where the class files can be found. For
example to use them with javah.
find_jar(<VAR>
name | NAMES name1 [name2 ...]
[PATHS path1 [path2 ... ENV var]]
[VERSIONS version1 [version2]]
[DOC "cache documentation string"]
)
This command is used to find a full path to the named jar. A cache entry named by <VAR>
is created to stor the result of this command. If the full path to a jar is found the
result is stored in the variable and the search will not repeated unless the variable is
cleared. If nothing is found, the result will be <VAR>-NOTFOUND, and the search will be
attempted again next time find_jar is invoked with the same variable. The name of the
full path to a file that is searched for is specified by the names listed after NAMES
argument. Additional search locations can be specified after the PATHS argument. If you
require special a version of a jar file you can specify it with the VERSIONS argument.
The argument after DOC will be used for the documentation string in the cache.
install_jar(target_name destination)
install_jar(target_name DESTINATION destination [COMPONENT component])
This command installs the TARGET_NAME files to the given DESTINATION. It should be called
in the same scope as add_jar() or it will fail.
Target Properties:
The install_jar() function sets the INSTALL_DESTINATION target property
on jars so installed. This property holds the DESTINATION as described
above, and is used by install_jar_exports(). You can get this property
with the
get_property(TARGET <target_name> PROPERTY INSTALL_DESTINATION)
command.
install_jni_symlink(target_name destination)
install_jni_symlink(target_name DESTINATION destination [COMPONENT component])
This command installs the TARGET_NAME JNI symlinks to the given DESTINATION. It should be
called in the same scope as add_jar() or it will fail.
install_jar_exports(TARGETS jars...
[NAMESPACE <namespace>]
FILE <filename>
DESTINATION <dir> [COMPONENT <component>])
This command installs a target export file <filename> for the named jar targets to the
given DESTINATION. Its function is similar to that of install(EXPORTS ...).
export_jars(TARGETS jars...
[NAMESPACE <namespace>]
FILE <filename>)
This command writes a target export file <filename> for the named jar targets. Its func‐
tion is similar to that of export(...).
create_javadoc(<VAR>
PACKAGES pkg1 [pkg2 ...]
[SOURCEPATH <sourcepath>]
[CLASSPATH <classpath>]
[INSTALLPATH <install path>]
[DOCTITLE "the documentation title"]
[WINDOWTITLE "the title of the document"]
[AUTHOR TRUE|FALSE]
[USE TRUE|FALSE]
[VERSION TRUE|FALSE]
)
Create java documentation based on files or packages. For more details please read the
javadoc manpage.
There are two main signatures for create_javadoc. The first signature works with package
names on a path with source files:
Example:
create_javadoc(my_example_doc
PACKAGES com.exmaple.foo com.example.bar
SOURCEPATH "${CMAKE_CURRENT_SOURCE_DIR}"
CLASSPATH ${CMAKE_JAVA_INCLUDE_PATH}
WINDOWTITLE "My example"
DOCTITLE "<h1>My example</h1>"
AUTHOR TRUE
USE TRUE
VERSION TRUE
)
The second signature for create_javadoc works on a given list of files.
create_javadoc(<VAR>
FILES file1 [file2 ...]
[CLASSPATH <classpath>]
[INSTALLPATH <install path>]
[DOCTITLE "the documentation title"]
[WINDOWTITLE "the title of the document"]
[AUTHOR TRUE|FALSE]
[USE TRUE|FALSE]
[VERSION TRUE|FALSE]
)
Example:
create_javadoc(my_example_doc
FILES ${example_SRCS}
CLASSPATH ${CMAKE_JAVA_INCLUDE_PATH}
WINDOWTITLE "My example"
DOCTITLE "<h1>My example</h1>"
AUTHOR TRUE
USE TRUE
VERSION TRUE
)
Both signatures share most of the options. These options are the same as what you can
find in the javadoc manpage. Please look at the manpage for CLASSPATH, DOCTITLE, WIN‐
DOWTITLE, AUTHOR, USE and VERSION.
The documentation will be by default installed to
${CMAKE_INSTALL_PREFIX}/share/javadoc/<VAR>
if you don’t set the INSTALLPATH.
create_javah(TARGET <target>
GENERATED_FILES <VAR>
CLASSES <class>...
[CLASSPATH <classpath>...]
[DEPENDS <depend>...]
[OUTPUT_NAME <path>|OUTPUT_DIR <path>]
)
Create C header files from java classes. These files provide the connective glue that
allow your Java and C code to interact.
There are two main signatures for create_javah. The first signature returns generated
files through variable specified by GENERATED_FILES option:
Example:
Create_javah(GENERATED_FILES files_headers
CLASSES org.cmake.HelloWorld
CLASSPATH hello.jar
)
The second signature for create_javah creates a target which encapsulates header files
generation.
Example:
Create_javah(TARGET target_headers
CLASSES org.cmake.HelloWorld
CLASSPATH hello.jar
)
Both signatures share same options.
CLASSES <class>...
Specifies Java classes used to generate headers.
CLASSPATH <classpath>...
Specifies various paths to look up classes. Here .class files, jar files or tar‐
gets created by command add_jar can be used.
DEPENDS <depend>...
Targets on which the javah target depends
OUTPUT_NAME <path>
Concatenates the resulting header files for all the classes listed by option
CLASSES into <path>. Same behavior as option ‘-o’ of javah tool.
OUTPUT_DIR <path>
Sets the directory where the header files will be generated. Same behavior as
option ‘-d’ of javah tool. If not specified, ${CMAKE_CURRENT_BINARY_DIR} is used
as output directory.
UseJavaSymlinks
Helper script for UseJava.cmake
UsePkgConfig
Obsolete pkg-config module for CMake, use FindPkgConfig instead.
This module defines the following macro:
PKGCONFIG(package includedir libdir linkflags cflags)
Calling PKGCONFIG will fill the desired information into the 4 given arguments, e.g. PKG‐
CONFIG(libart-2.0 LIBART_INCLUDE_DIR LIBART_LINK_DIR LIBART_LINK_FLAGS LIBART_CFLAGS) if
pkg-config was NOT found or the specified software package doesn’t exist, the variable
will be empty when the function returns, otherwise they will contain the respective infor‐
mation
UseSWIG
Defines the following macros for use with SWIG:
SWIG_ADD_LIBRARY(<name>
[TYPE <SHARED|MODULE|STATIC|USE_BUILD_SHARED_LIBS>]
LANGUAGE <language>
SOURCES <file>...
)
- Define swig module with given name and specified language
SWIG_LINK_LIBRARIES(name [ libraries ])
- Link libraries to swig module
Source files properties on module files can be set before the invocation of the
SWIG_ADD_LIBRARY macro to specify special behavior of SWIG.
The source file property CPLUSPLUS calls SWIG in c++ mode, e.g.:
set_property(SOURCE mymod.i PROPERTY CPLUSPLUS ON)
swig_add_library(mymod LANGUAGE python SOURCES mymod.i)
The source file property SWIG_FLAGS adds custom flags to the SWIG executable.
The source-file property SWIG_MODULE_NAME have to be provided to specify the actual import
name of the module in the target language if it cannot be scanned automatically from
source or different from the module file basename.:
set_property(SOURCE mymod.i PROPERTY SWIG_MODULE_NAME mymod_realname)
To get the name of the swig module target library, use: ${SWIG_MODULE_${name}_REAL_NAME}.
Also some variables can be set to specify special behavior of SWIG.
CMAKE_SWIG_FLAGS can be used to add special flags to all swig calls.
CMAKE_SWIG_OUTDIR allows one to specify where to write the language specific files (swig
-outdir option).
SWIG_OUTFILE_DIR allows one to specify where to write the output file (swig -o option).
If not specified, CMAKE_SWIG_OUTDIR is used.
The name-specific variable SWIG_MODULE_<name>_EXTRA_DEPS may be used to specify extra
dependencies for the generated modules.
If the source file generated by swig need some special flag you can use:
set_source_files_properties( ${swig_generated_file_fullname}
PROPERTIES COMPILE_FLAGS "-bla")
UsewxWidgets
Convenience include for using wxWidgets library.
Determines if wxWidgets was FOUND and sets the appropriate libs, incdirs, flags, etc.
INCLUDE_DIRECTORIES and LINK_DIRECTORIES are called.
USAGE
# Note that for MinGW users the order of libs is important!
find_package(wxWidgets REQUIRED net gl core base)
include(${wxWidgets_USE_FILE})
# and for each of your dependent executable/library targets:
target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES})
DEPRECATED
LINK_LIBRARIES is not called in favor of adding dependencies per target.
AUTHOR
Jan Woetzel <jw -at- mip.informatik.uni-kiel.de>
Use_wxWindows
This convenience include finds if wxWindows is installed and set the appropriate libs,
incdirs, flags etc. author Jan Woetzel <jw -at- mip.informatik.uni-kiel.de> (07/2003)
USAGE:
just include Use_wxWindows.cmake
in your projects CMakeLists.txt
include( ${CMAKE_MODULE_PATH}/Use_wxWindows.cmake)
if you are sure you need GL then
set(WXWINDOWS_USE_GL 1)
*before* you include this file.
WriteBasicConfigVersionFile
WRITE_BASIC_CONFIG_VERSION_FILE( filename
[VERSION major.minor.patch]
COMPATIBILITY (AnyNewerVersion|SameMajorVersion)
)
Deprecated, see WRITE_BASIC_PACKAGE_VERSION_FILE(), it is identical.
WriteCompilerDetectionHeader
This module provides the function write_compiler_detection_header().
The WRITE_COMPILER_DETECTION_HEADER function can be used to generate a file suitable for
preprocessor inclusion which contains macros to be used in source code:
write_compiler_detection_header(
FILE <file>
PREFIX <prefix>
[OUTPUT_FILES_VAR <output_files_var> OUTPUT_DIR <output_dir>]
COMPILERS <compiler> [...]
FEATURES <feature> [...]
[VERSION <version>]
[PROLOG <prolog>]
[EPILOG <epilog>]
[ALLOW_UNKNOWN_COMPILERS]
[ALLOW_UNKNOWN_COMPILER_VERSIONS]
)
The write_compiler_detection_header function generates the file <file> with macros which
all have the prefix <prefix>.
By default, all content is written directly to the <file>. The OUTPUT_FILES_VAR may be
specified to cause the compiler-specific content to be written to separate files. The
separate files are then available in the <output_files_var> and may be consumed by the
caller for installation for example. The OUTPUT_DIR specifies a relative path from the
main <file> to the compiler-specific files. For example:
write_compiler_detection_header(
FILE climbingstats_compiler_detection.h
PREFIX ClimbingStats
OUTPUT_FILES_VAR support_files
OUTPUT_DIR compilers
COMPILERS GNU Clang MSVC Intel
FEATURES cxx_variadic_templates
)
install(FILES
${CMAKE_CURRENT_BINARY_DIR}/climbingstats_compiler_detection.h
DESTINATION include
)
install(FILES
${support_files}
DESTINATION include/compilers
)
VERSION may be used to specify the API version to be generated. Future versions of CMake
may introduce alternative APIs. A given API is selected by any <version> value greater
than or equal to the version of CMake that introduced the given API and less than the ver‐
sion of CMake that introduced its succeeding API. The value of the CMAKE_MINI‐
MUM_REQUIRED_VERSION variable is used if no explicit version is specified. (As of CMake
version 3.10.2 there is only one API version.)
PROLOG may be specified as text content to write at the start of the header. EPILOG may be
specified as text content to write at the end of the header
At least one <compiler> and one <feature> must be listed. Compilers which are known to
CMake, but not specified are detected and a preprocessor #error is generated for them. A
preprocessor macro matching <PREFIX>_COMPILER_IS_<compiler> is generated for each compiler
known to CMake to contain the value 0 or 1.
Possible compiler identifiers are documented with the CMAKE_<LANG>_COMPILER_ID variable.
Available features in this version of CMake are listed in the CMAKE_C_KNOWN_FEATURES and
CMAKE_CXX_KNOWN_FEATURES global properties. The {c,cxx}_std_* meta-features are ignored
if requested.
See the cmake-compile-features(7) manual for information on compile features.
ALLOW_UNKNOWN_COMPILERS and ALLOW_UNKNOWN_COMPILER_VERSIONS cause the module to generate
conditions that treat unknown compilers as simply lacking all features. Without these
options the default behavior is to generate a #error for unknown compilers.
Feature Test Macros
For each compiler, a preprocessor macro is generated matching <PREFIX>_COMPILER_IS_<com‐
piler> which has the content either 0 or 1, depending on the compiler in use. Preprocessor
macros for compiler version components are generated matching <PREFIX>_COMPILER_VER‐
SION_MAJOR <PREFIX>_COMPILER_VERSION_MINOR and <PREFIX>_COMPILER_VERSION_PATCH containing
decimal values for the corresponding compiler version components, if defined.
A preprocessor test is generated based on the compiler version denoting whether each fea‐
ture is enabled. A preprocessor macro matching <PREFIX>_COMPILER_<FEATURE>, where <FEA‐
TURE> is the upper-case <feature> name, is generated to contain the value 0 or 1 depending
on whether the compiler in use supports the feature:
write_compiler_detection_header(
FILE climbingstats_compiler_detection.h
PREFIX ClimbingStats
COMPILERS GNU Clang AppleClang MSVC Intel
FEATURES cxx_variadic_templates
)
#if ClimbingStats_COMPILER_CXX_VARIADIC_TEMPLATES
template<typename... T>
void someInterface(T t...) { /* ... */ }
#else
// Compatibility versions
template<typename T1>
void someInterface(T1 t1) { /* ... */ }
template<typename T1, typename T2>
void someInterface(T1 t1, T2 t2) { /* ... */ }
template<typename T1, typename T2, typename T3>
void someInterface(T1 t1, T2 t2, T3 t3) { /* ... */ }
#endif
Symbol Macros
Some additional symbol-defines are created for particular features for use as symbols
which may be conditionally defined empty:
class MyClass ClimbingStats_FINAL
{
ClimbingStats_CONSTEXPR int someInterface() { return 42; }
};
The ClimbingStats_FINAL macro will expand to final if the compiler (and its flags) support
the cxx_final feature, and the ClimbingStats_CONSTEXPR macro will expand to constexpr if
cxx_constexpr is supported.
The following features generate corresponding symbol defines:
┌──────────────────────┬──────────────────────────┬─────────────┐
│Feature │ Define │ Symbol │
├──────────────────────┼──────────────────────────┼─────────────┤
│c_restrict │ <PREFIX>_RESTRICT │ restrict │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_constexpr │ <PREFIX>_CONSTEXPR │ constexpr │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_deleted_functions │ <PREFIX>_DELETED_FUNC‐ │ = delete │
│ │ TION │ │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_extern_templates │ <PREFIX>_EXTERN_TEMPLATE │ extern │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_final │ <PREFIX>_FINAL │ final │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_noexcept │ <PREFIX>_NOEXCEPT │ noexcept │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_noexcept │ <PREFIX>_NOEX‐ │ noexcept(X) │
│ │ CEPT_EXPR(X) │ │
├──────────────────────┼──────────────────────────┼─────────────┤
│cxx_override │ <PREFIX>_OVERRIDE │ override │
└──────────────────────┴──────────────────────────┴─────────────┘
Compatibility Implementation Macros
Some features are suitable for wrapping in a macro with a backward compatibility implemen‐
tation if the compiler does not support the feature.
When the cxx_static_assert feature is not provided by the compiler, a compatibility imple‐
mentation is available via the <PREFIX>_STATIC_ASSERT(COND) and <PRE‐
FIX>_STATIC_ASSERT_MSG(COND, MSG) function-like macros. The macros expand to static_assert
where that compiler feature is available, and to a compatibility implementation otherwise.
In the first form, the condition is stringified in the message field of static_assert. In
the second form, the message MSG is passed to the message field of static_assert, or
ignored if using the backward compatibility implementation.
The cxx_attribute_deprecated feature provides a macro definition <PREFIX>_DEPRECATED,
which expands to either the standard [[deprecated]] attribute or a compiler-specific deco‐
rator such as __attribute__((__deprecated__)) used by GNU compilers.
The cxx_alignas feature provides a macro definition <PREFIX>_ALIGNAS which expands to
either the standard alignas decorator or a compiler-specific decorator such as
__attribute__ ((__aligned__)) used by GNU compilers.
The cxx_alignof feature provides a macro definition <PREFIX>_ALIGNOF which expands to
either the standard alignof decorator or a compiler-specific decorator such as __alignof__
used by GNU compilers.
┌─────────────────────────┬─────────────────────────┬────────────────┐
│Feature │ Define │ Symbol │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_alignas │ <PREFIX>_ALIGNAS │ alignas │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_alignof │ <PREFIX>_ALIGNOF │ alignof │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_nullptr │ <PREFIX>_NULLPTR │ nullptr │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_static_assert │ <PREFIX>_STATIC_ASSERT │ static_assert │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_static_assert │ <PRE‐ │ static_assert │
│ │ FIX>_STATIC_ASSERT_MSG │ │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_attribute_deprecated │ <PREFIX>_DEPRECATED │ [[deprecated]] │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_attribute_deprecated │ <PREFIX>_DEPRECATED_MSG │ [[deprecated]] │
├─────────────────────────┼─────────────────────────┼────────────────┤
│cxx_thread_local │ <PREFIX>_THREAD_LOCAL │ thread_local │
└─────────────────────────┴─────────────────────────┴────────────────┘
A use-case which arises with such deprecation macros is the deprecation of an entire
library. In that case, all public API in the library may be decorated with the <PRE‐
FIX>_DEPRECATED macro. This results in very noisy build output when building the library
itself, so the macro may be may be defined to empty in that case when building the depre‐
cated library:
add_library(compat_support ${srcs})
target_compile_definitions(compat_support
PRIVATE
CompatSupport_DEPRECATED=
)
3.10.2 July 13, 2019 CMAKE-MODULES(7)
NAME
cmake-modules - CMake Modules ReferenceALL MODULES
AddFileDependencies ADD_FILE_DEPENDENCIES(source_file depend_files…) Adds the given files as dependencies to source_file AndroidTestUtilities Create a test that automatically loads specified data onto an Android device. Introduction Use this module to push data needed for testing an Android device behavior onto a con‐ nected Android device. The module will accept files and libraries as well as separate des‐ tinations for each. It will create a test that loads the files into a device object store and link to them from the specified destination. The files are only uploaded if they are not already in the object store. For example: include(AndroidTestUtilities) android_add_test_data( example_setup_test FILES <files>... LIBS <libs>... DEVICE_TEST_DIR "/data/local/tests/example" DEVICE_OBJECT_STORE "/sdcard/.ExternalData/SHA" ) At build time a test named “example_setup_test” will be created. Run this test on the command line with ctest(1) to load the data onto the Android device. Module Functions android_add_test_data android_add_test_data(<test-name> [FILES <files>...] [FILES_DEST <device-dir>] [LIBS <libs>...] [LIBS_DEST <device-dir>] [DEVICE_OBJECT_STORE <device-dir>] [DEVICE_TEST_DIR <device-dir>] [NO_LINK_REGEX <strings>...] ) The android_add_test_data function is used to copy files and libraries needed to run project-specific tests. On the host operating system, this is done at build time. For on-device testing, the files are loaded onto the device by the manufac‐ tured test at run time. This function accepts the following named parameters: FILES <files>... zero or more files needed for testing LIBS <libs>... zero or more libraries needed for testing FILES_DEST <device-dir> absolute path where the data files are expected to be LIBS_DEST <device-dir> absolute path where the libraries are expected to be DEVICE_OBJECT_STORE <device-dir> absolute path to the location where the data is stored on-device DEVICE_TEST_DIR <device-dir> absolute path to the root directory of the on-device test location NO_LINK_REGEX <strings>... list of regex strings matching the names of files that should be copied from the object store to the testing directory BundleUtilities Functions to help assemble a standalone bundle application. A collection of CMake utility functions useful for dealing with .app bundles on the Mac and bundle-like directories on any OS. The following functions are provided by this module: fixup_bundle copy_and_fixup_bundle verify_app get_bundle_main_executable get_dotapp_dir get_bundle_and_executable get_bundle_all_executables get_item_key get_item_rpaths clear_bundle_keys set_bundle_key_values get_bundle_keys copy_resolved_item_into_bundle copy_resolved_framework_into_bundle fixup_bundle_item verify_bundle_prerequisites verify_bundle_symlinks Requires CMake 2.6 or greater because it uses function, break and PARENT_SCOPE. Also depends on GetPrerequisites.cmake. FIXUP_BUNDLE(<app> <libs> <dirs>) Fix up a bundle in-place and make it standalone, such that it can be drag-n-drop copied to another machine and run on that machine as long as all of the system libraries are compat‐ ible. If you pass plugins to fixup_bundle as the libs parameter, you should install them or copy them into the bundle before calling fixup_bundle. The “libs” parameter is a list of libraries that must be fixed up, but that cannot be determined by otool output analysis. (i.e., plugins) Gather all the keys for all the executables and libraries in a bundle, and then, for each key, copy each prerequisite into the bundle. Then fix each one up according to its own list of prerequisites. Then clear all the keys and call verify_app on the final bundle to ensure that it is truly standalone. As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM “vcredist_x86.exe;vcredist_x64.exe”) COPY_AND_FIXUP_BUNDLE(<src> <dst> <libs> <dirs>) Makes a copy of the bundle <src> at location <dst> and then fixes up the new copied bundle in-place at <dst>… VERIFY_APP(<app>) Verifies that an application <app> appears valid based on running analysis tools on it. Calls “message(FATAL_ERROR” if the application is not verified. As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM “vcredist_x86.exe;vcredist_x64.exe”) GET_BUNDLE_MAIN_EXECUTABLE(<bundle> <result_var>) The result will be the full path name of the bundle’s main executable file or an “error:” prefixed string if it could not be determined. GET_DOTAPP_DIR(<exe> <dotapp_dir_var>) Returns the nearest parent dir whose name ends with “.app” given the full path to an exe‐ cutable. If there is no such parent dir, then simply return the dir containing the exe‐ cutable. The returned directory may or may not exist. GET_BUNDLE_AND_EXECUTABLE(<app> <bundle_var> <executable_var> <valid_var>) Takes either a “.app” directory name or the name of an executable nested inside a “.app” directory and returns the path to the “.app” directory in <bundle_var> and the path to its main executable in <executable_var> GET_BUNDLE_ALL_EXECUTABLES(<bundle> <exes_var>) Scans the given bundle recursively for all executable files and accumulates them into a variable. GET_ITEM_KEY(<item> <key_var>) Given a file (item) name, generate a key that should be unique considering the set of libraries that need copying or fixing up to make a bundle standalone. This is essentially the file name including extension with “.” replaced by “_” This key is used as a prefix for CMake variables so that we can associate a set of vari‐ ables with a given item based on its key. CLEAR_BUNDLE_KEYS(<keys_var>) Loop over the list of keys, clearing all the variables associated with each key. After the loop, clear the list of keys itself. Caller of get_bundle_keys should call clear_bundle_keys when done with list of keys. SET_BUNDLE_KEY_VALUES(<keys_var> <context> <item> <exepath> <dirs> <copyflag> [<rpaths>]) Add a key to the list (if necessary) for the given item. If added, also set all the vari‐ ables associated with that key. GET_BUNDLE_KEYS(<app> <libs> <dirs> <keys_var>) Loop over all the executable and library files within the bundle (and given as extra <libs>) and accumulate a list of keys representing them. Set values associated with each key such that we can loop over all of them and copy prerequisite libs into the bundle and then do appropriate install_name_tool fixups. As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM “vcredist_x86.exe;vcredist_x64.exe”) COPY_RESOLVED_ITEM_INTO_BUNDLE(<resolved_item> <resolved_embedded_item>) Copy a resolved item into the bundle if necessary. Copy is not necessary if the resolved_item is “the same as” the resolved_embedded_item. COPY_RESOLVED_FRAMEWORK_INTO_BUNDLE(<resolved_item> <resolved_embedded_item>) Copy a resolved framework into the bundle if necessary. Copy is not necessary if the resolved_item is “the same as” the resolved_embedded_item. By default, BU_COPY_FULL_FRAMEWORK_CONTENTS is not set. If you want full frameworks embedded in your bundles, set BU_COPY_FULL_FRAMEWORK_CONTENTS to ON before calling fixup_bundle. By default, COPY_RESOLVED_FRAMEWORK_INTO_BUNDLE copies the framework dylib itself plus the framework Resources directory. FIXUP_BUNDLE_ITEM(<resolved_embedded_item> <exepath> <dirs>) Get the direct/non-system prerequisites of the resolved embedded item. For each prerequi‐ site, change the way it is referenced to the value of the _EMBEDDED_ITEM keyed variable for that prerequisite. (Most likely changing to an “@executable_path” style reference.) This function requires that the resolved_embedded_item be “inside” the bundle already. In other words, if you pass plugins to fixup_bundle as the libs parameter, you should install them or copy them into the bundle before calling fixup_bundle. The “libs” parameter is a list of libraries that must be fixed up, but that cannot be determined by otool output analysis. (i.e., plugins) Also, change the id of the item being fixed up to its own _EMBEDDED_ITEM value. Accumulate changes in a local variable and make one call to install_name_tool at the end of the function with all the changes at once. If the BU_CHMOD_BUNDLE_ITEMS variable is set then bundle items will be marked writable before install_name_tool tries to change them. VERIFY_BUNDLE_PREREQUISITES(<bundle> <result_var> <info_var>) Verifies that the sum of all prerequisites of all files inside the bundle are contained within the bundle or are “system” libraries, presumed to exist everywhere. As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM “vcredist_x86.exe;vcredist_x64.exe”) VERIFY_BUNDLE_SYMLINKS(<bundle> <result_var> <info_var>) Verifies that any symlinks found in the bundle point to other files that are already also in the bundle… Anything that points to an external file causes this function to fail the verification. CheckCCompilerFlag Check whether the C compiler supports a given flag. check_c_compiler_flag check_c_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_c_source_compiles macro from the CheckCSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diag‐ nostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags from variables like CMAKE_C_FLAGS, unknown flags in such variables may cause a false negative for this check. CheckCSourceCompiles Check if given C source compiles and links into an executable. check_c_source_compiles check_c_source_compiles(code resultVar [FAIL_REGEX regex1 [regex2...]]) Check that the source supplied in code can be compiled as a C source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by resultVar, with a bool‐ ean true value for success and boolean false for failure. If FAIL_REGEX is pro‐ vided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_c_source_compiles(): CMAKE_REQUIRED_FLAGS Additional flags to pass to the compiler. Note that the contents of CMAKE_C_FLAGS and its associated configuration-specific variable are auto‐ matically added to the compiler command before the contents of CMAKE_REQUIRED_FLAGS. CMAKE_REQUIRED_DEFINITIONS A ;-list of compiler definitions of the form -DFOO or -DFOO=bar. A defini‐ tion for the name specified by resultVar will also be added automatically. CMAKE_REQUIRED_INCLUDES A ;-list of header search paths to pass to the compiler. These will be the only header search paths used by try_compile(), i.e. the contents of the INCLUDE_DIRECTORIES directory property will be ignored. CMAKE_REQUIRED_LIBRARIES A ;-list of libraries to add to the link command. These can be the name of system libraries or they can be Imported Targets (see try_compile() for fur‐ ther details). CMAKE_REQUIRED_QUIET If this variable evaluates to a boolean true value, all status messages associated with the check will be suppressed. The check is only performed once, with the result cached in the variable named by resultVar. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the code changes. In order to force the check to be re-evaluated, the variable named by resultVar must be manually removed from the cache. CheckCSourceRuns Check if given C source compiles and links into an executable and can subsequently be run. check_c_source_runs check_c_source_runs(code resultVar) Check that the source supplied in code can be compiled as a C source file, linked as an executable and then run. The code must contain at least a main() function. If the code could be built and run successfully, the internal cache variable specified by resultVar will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to call‐ ing check_c_source_runs(): CMAKE_REQUIRED_FLAGS Additional flags to pass to the compiler. Note that the contents of CMAKE_C_FLAGS and its associated configuration-specific variable are auto‐ matically added to the compiler command before the contents of CMAKE_REQUIRED_FLAGS. CMAKE_REQUIRED_DEFINITIONS A ;-list of compiler definitions of the form -DFOO or -DFOO=bar. A defini‐ tion for the name specified by resultVar will also be added automatically. CMAKE_REQUIRED_INCLUDES A ;-list of header search paths to pass to the compiler. These will be the only header search paths used by try_run(), i.e. the contents of the INCLUDE_DIRECTORIES directory property will be ignored. CMAKE_REQUIRED_LIBRARIES A ;-list of libraries to add to the link command. These can be the name of system libraries or they can be Imported Targets (see try_run() for further details). CMAKE_REQUIRED_QUIET If this variable evaluates to a boolean true value, all status messages associated with the check will be suppressed. The check is only performed once, with the result cached in the variable named by resultVar. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the code changes. In order to force the check to be re-evaluated, the variable named by resultVar must be manually removed from the cache. CheckCXXCompilerFlag Check whether the CXX compiler supports a given flag. check_cxx_compiler_flag check_cxx_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_cxx_source_compiles macro from the CheckCXXSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diag‐ nostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags from variables like CMAKE_CXX_FLAGS, unknown flags in such variables may cause a false negative for this check. CheckCXXSourceCompiles Check if given C++ source compiles and links into an executable. check_cxx_source_compiles check_cxx_source_compiles(code resultVar [FAIL_REGEX regex1 [regex2...]]) Check that the source supplied in code can be compiled as a C++ source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by resultVar, with a bool‐ ean true value for success and boolean false for failure. If FAIL_REGEX is pro‐ vided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_cxx_source_compiles(): CMAKE_REQUIRED_FLAGS Additional flags to pass to the compiler. Note that the contents of CMAKE_CXX_FLAGS and its associated configuration-specific variable are auto‐ matically added to the compiler command before the contents of CMAKE_REQUIRED_FLAGS. CMAKE_REQUIRED_DEFINITIONS A ;-list of compiler definitions of the form -DFOO or -DFOO=bar. A defini‐ tion for the name specified by resultVar will also be added automatically. CMAKE_REQUIRED_INCLUDES A ;-list of header search paths to pass to the compiler. These will be the only header search paths used by try_compile(), i.e. the contents of the INCLUDE_DIRECTORIES directory property will be ignored. CMAKE_REQUIRED_LIBRARIES A ;-list of libraries to add to the link command. These can be the name of system libraries or they can be Imported Targets (see try_compile() for fur‐ ther details). CMAKE_REQUIRED_QUIET If this variable evaluates to a boolean true value, all status messages associated with the check will be suppressed. The check is only performed once, with the result cached in the variable named by resultVar. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the code changes. In order to force the check to be re-evaluated, the variable named by resultVar must be manually removed from the cache. CheckCXXSourceRuns Check if given C++ source compiles and links into an executable and can subsequently be run. check_cxx_source_runs check_cxx_source_runs(code resultVar) Check that the source supplied in code can be compiled as a C++ source file, linked as an executable and then run. The code must contain at least a main() function. If the code could be built and run successfully, the internal cache variable specified by resultVar will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to call‐ ing check_cxx_source_runs(): CMAKE_REQUIRED_FLAGS Additional flags to pass to the compiler. Note that the contents of CMAKE_CXX_FLAGS and its associated configuration-specific variable are auto‐ matically added to the compiler command before the contents of CMAKE_REQUIRED_FLAGS. CMAKE_REQUIRED_DEFINITIONS A ;-list of compiler definitions of the form -DFOO or -DFOO=bar. A defini‐ tion for the name specified by resultVar will also be added automatically. CMAKE_REQUIRED_INCLUDES A ;-list of header search paths to pass to the compiler. These will be the only header search paths used by try_run(), i.e. the contents of the INCLUDE_DIRECTORIES directory property will be ignored. CMAKE_REQUIRED_LIBRARIES A ;-list of libraries to add to the link command. These can be the name of system libraries or they can be Imported Targets (see try_run() for further details). CMAKE_REQUIRED_QUIET If this variable evaluates to a boolean true value, all status messages associated with the check will be suppressed. The check is only performed once, with the result cached in the variable named by resultVar. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the code changes. In order to force the check to be re-evaluated, the variable named by resultVar must be manually removed from the cache. CheckCXXSymbolExists Check if a symbol exists as a function, variable, or macro in C++ CHECK_CXX_SYMBOL_EXISTS(<symbol> <files> <variable>) Check that the <symbol> is available after including given header <files> and store the result in a <variable>. Specify the list of files in one argument as a semicolon-sepa‐ rated list. CHECK_CXX_SYMBOL_EXISTS() can be used to check in C++ files, as opposed to CHECK_SYMBOL_EXISTS(), which works only for C. If the header files define the symbol as a macro it is considered available and assumed to work. If the header files declare the symbol as a function or variable then the symbol must also be available for linking. If the symbol is a type or enum value it will not be recognized (consider using CheckTypeSize or CheckCSourceCompiles). The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES = list of include directories CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages CheckFortranCompilerFlag Check whether the Fortran compiler supports a given flag. check_fortran_compiler_flag check_fortran_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_fortran_source_compiles macro from the CheckFortranSourceCompiles module. See docu‐ mentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diag‐ nostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags from variables like CMAKE_Fortran_FLAGS, unknown flags in such variables may cause a false negative for this check. CheckFortranFunctionExists macro which checks if the Fortran function exists CHECK_FORTRAN_FUNCTION_EXISTS(FUNCTION VARIABLE) FUNCTION - the name of the Fortran function VARIABLE - variable to store the result Will be created as an internal cache variable. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_LIBRARIES = list of libraries to link CheckFortranSourceCompiles Check if given Fortran source compiles and links into an executable. check_fortran_source_compiles check_fortran_source_compiles(code resultVar [FAIL_REGEX regex1 [regex2...]] [SRC_EXT ext] ) Check that the source supplied in code can be compiled as a Fortran source file and linked as an executable (so it must contain at least a PROGRAM entry point). The result will be stored in the internal cache variable specified by resultVar, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is pro‐ vided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. By default, the test source file will be given a .F file extension. The SRC_EXT option can be used to override this with .ext instead. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_fortran_source_compiles(): CMAKE_REQUIRED_FLAGS Additional flags to pass to the compiler. Note that the contents of CMAKE_Fortran_FLAGS and its associated configuration-specific variable are automatically added to the compiler command before the contents of CMAKE_REQUIRED_FLAGS. CMAKE_REQUIRED_DEFINITIONS A ;-list of compiler definitions of the form -DFOO or -DFOO=bar. A defini‐ tion for the name specified by resultVar will also be added automatically. CMAKE_REQUIRED_INCLUDES A ;-list of header search paths to pass to the compiler. These will be the only header search paths used by try_compile(), i.e. the contents of the INCLUDE_DIRECTORIES directory property will be ignored. CMAKE_REQUIRED_LIBRARIES A ;-list of libraries to add to the link command. These can be the name of system libraries or they can be Imported Targets (see try_compile() for fur‐ ther details). CMAKE_REQUIRED_QUIET If this variable evaluates to a boolean true value, all status messages associated with the check will be suppressed. The check is only performed once, with the result cached in the variable named by resultVar. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the code changes. In order to force the check to be re-evaluated, the variable named by resultVar must be manually removed from the cache. CheckFunctionExists Check if a C function can be linked: check_function_exists(<function> <variable>) Check that the <function> is provided by libraries on the system and store the result in a <variable>. <variable> will be created as an internal cache variable. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES = list of include directories CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages NOTE: Prefer using CheckSymbolExists instead of this module, for the following reasons: · check_function_exists() can’t detect functions that are inlined in headers or speci‐ fied as a macro. · check_function_exists() can’t detect anything in the 32-bit versions of the Win32 API, because of a mismatch in calling conventions. · check_function_exists() only verifies linking, it does not verify that the function is declared in system headers. CheckIPOSupported Check whether the compiler supports an interprocedural optimization (IPO/LTO). Use this before enabling the INTERPROCEDURAL_OPTIMIZATION target property. check_ipo_supported check_ipo_supported([RESULT <result>] [OUTPUT <output>] [LANGUAGES <lang>...]) Options are: RESULT <result> Set <result> variable to YES if IPO is supported by the compiler and NO oth‐ erwise. If this option is not given then the command will issue a fatal error if IPO is not supported. OUTPUT <output> Set <output> variable with details about any error. LANGUAGES <lang>... Specify languages whose compilers to check. Languages C and CXX are sup‐ ported. It makes no sense to use this module when CMP0069 is set to OLD so module will return error in this case. See policy CMP0069 for details. Examples check_ipo_supported() # fatal error if IPO is not supported set_property(TARGET foo PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE) # Optional IPO. Do not use IPO if it's not supported by compiler. check_ipo_supported(RESULT result OUTPUT output) if(result) set_property(TARGET foo PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE) else() message(WARNING "IPO is not supported: ${output}") endif() CheckIncludeFileCXX Provides a macro to check if a header file can be included in CXX. CHECK_INCLUDE_FILE_CXX CHECK_INCLUDE_FILE_CXX(<include> <variable> [<flags>]) Check if the given <include> file may be included in a CXX source file and store the result in an internal cache entry named <variable>. The optional third argu‐ ment may be used to add compilation flags to the check (or use CMAKE_REQUIRED_FLAGS below). The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS string of compile command line flags CMAKE_REQUIRED_DEFINITIONS list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES list of include directories CMAKE_REQUIRED_QUIET execute quietly without messages See modules CheckIncludeFile and CheckIncludeFiles to check for one or more C headers. CheckIncludeFile Provides a macro to check if a header file can be included in C. CHECK_INCLUDE_FILE CHECK_INCLUDE_FILE(<include> <variable> [<flags>]) Check if the given <include> file may be included in a C source file and store the result in an internal cache entry named <variable>. The optional third argument may be used to add compilation flags to the check (or use CMAKE_REQUIRED_FLAGS below). The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS string of compile command line flags CMAKE_REQUIRED_DEFINITIONS list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES list of include directories CMAKE_REQUIRED_QUIET execute quietly without messages See the CheckIncludeFiles module to check for multiple headers at once. See the CheckIn‐ cludeFileCXX module to check for headers using the CXX language. CheckIncludeFiles Provides a macro to check if a list of one or more header files can be included together in C. CHECK_INCLUDE_FILES CHECK_INCLUDE_FILES("<includes>" <variable>) Check if the given <includes> list may be included together in a C source file and store the result in an internal cache entry named <variable>. Specify the <includes> argument as a ;-list of header file names. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS string of compile command line flags CMAKE_REQUIRED_DEFINITIONS list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES list of include directories CMAKE_REQUIRED_QUIET execute quietly without messages See modules CheckIncludeFile and CheckIncludeFileCXX to check for a single header file in C or CXX languages. CheckLanguage Check if a language can be enabled Usage: check_language(<lang>) where <lang> is a language that may be passed to enable_language() such as “Fortran”. If CMAKE_<lang>_COMPILER is already defined the check does nothing. Otherwise it tries enabling the language in a test project. The result is cached in CMAKE_<lang>_COMPILER as the compiler that was found, or NOTFOUND if the language cannot be enabled. Example: check_language(Fortran) if(CMAKE_Fortran_COMPILER) enable_language(Fortran) else() message(STATUS "No Fortran support") endif() CheckLibraryExists Check if the function exists. CHECK_LIBRARY_EXISTS (LIBRARY FUNCTION LOCATION VARIABLE) LIBRARY - the name of the library you are looking for FUNCTION - the name of the function LOCATION - location where the library should be found VARIABLE - variable to store the result Will be created as an internal cache variable. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages CheckPrototypeDefinition Check if the protoype we expect is correct. check_prototype_definition(FUNCTION PROTOTYPE RETURN HEADER VARIABLE) FUNCTION - The name of the function (used to check if prototype exists) PROTOTYPE- The prototype to check. RETURN - The return value of the function. HEADER - The header files required. VARIABLE - The variable to store the result. Will be created as an internal cache variable. Example: check_prototype_definition(getpwent_r "struct passwd *getpwent_r(struct passwd *src, char *buf, int buflen)" "NULL" "unistd.h;pwd.h" SOLARIS_GETPWENT_R) The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES = list of include directories CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages CheckStructHasMember Check if the given struct or class has the specified member variable CHECK_STRUCT_HAS_MEMBER(<struct> <member> <header> <variable> [LANGUAGE <language>]) <struct> - the name of the struct or class you are interested in <member> - the member which existence you want to check <header> - the header(s) where the prototype should be declared <variable> - variable to store the result <language> - the compiler to use (C or CXX) The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES = list of include directories CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages Example: CHECK_STRUCT_HAS_MEMBER(“struct timeval” tv_sec sys/select.h HAVE_TIMEVAL_TV_SEC LANGUAGE C) CheckSymbolExists Provides a macro to check if a symbol exists as a function, variable, or macro in C. check_symbol_exists check_symbol_exists(<symbol> <files> <variable>) Check that the <symbol> is available after including given header <files> and store the result in a <variable>. Specify the list of files in one argument as a semi‐ colon-separated list. <variable> will be created as an internal cache variable. If the header files define the symbol as a macro it is considered available and assumed to work. If the header files declare the symbol as a function or variable then the symbol must also be available for linking (so intrinsics may not be detected). If the symbol is a type, enum value, or intrinsic it will not be recognized (consider using CheckTypeSize or CheckCSourceCompiles). If the check needs to be done in C++, consider using Check‐ CXXSymbolExists instead. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS string of compile command line flags CMAKE_REQUIRED_DEFINITIONS list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES list of include directories CMAKE_REQUIRED_LIBRARIES list of libraries to link CMAKE_REQUIRED_QUIET execute quietly without messages CheckTypeSize Check sizeof a type CHECK_TYPE_SIZE(TYPE VARIABLE [BUILTIN_TYPES_ONLY] [LANGUAGE <language>]) Check if the type exists and determine its size. On return, “HAVE_${VARIABLE}” holds the existence of the type, and “${VARIABLE}” holds one of the following: <size> = type has non-zero size <size> "0" = type has arch-dependent size (see below) "" = type does not exist Both HAVE_${VARIABLE} and ${VARIABLE} will be created as internal cache variables. Furthermore, the variable “${VARIABLE}_CODE” holds C preprocessor code to define the macro “${VARIABLE}” to the size of the type, or leave the macro undefined if the type does not exist. The variable “${VARIABLE}” may be “0” when CMAKE_OSX_ARCHITECTURES has multiple architec‐ tures for building OS X universal binaries. This indicates that the type size varies across architectures. In this case “${VARIABLE}_CODE” contains C preprocessor tests map‐ ping from each architecture macro to the corresponding type size. The list of architec‐ ture macros is stored in “${VARIABLE}_KEYS”, and the value for each key is stored in “${VARIABLE}-${KEY}”. If the BUILTIN_TYPES_ONLY option is not given, the macro checks for headers <sys/types.h>, <stdint.h>, and <stddef.h>, and saves results in HAVE_SYS_TYPES_H, HAVE_STDINT_H, and HAVE_STDDEF_H. The type size check automatically includes the available headers, thus supporting checks of types defined in the headers. If LANGUAGE is set, the specified compiler will be used to perform the check. Acceptable values are C and CXX Despite the name of the macro you may use it to check the size of more complex expres‐ sions, too. To check e.g. for the size of a struct member you can do something like this: check_type_size("((struct something*)0)->member" SIZEOF_MEMBER) The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_INCLUDES = list of include directories CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages CMAKE_EXTRA_INCLUDE_FILES = list of extra headers to include CheckVariableExists Check if the variable exists. CHECK_VARIABLE_EXISTS(VAR VARIABLE) VAR - the name of the variable VARIABLE - variable to store the result Will be created as an internal cache variable. This macro is only for C variables. The following variables may be set before calling this macro to modify the way the check is run: CMAKE_REQUIRED_FLAGS = string of compile command line flags CMAKE_REQUIRED_DEFINITIONS = list of macros to define (-DFOO=bar) CMAKE_REQUIRED_LIBRARIES = list of libraries to link CMAKE_REQUIRED_QUIET = execute quietly without messages CMakeAddFortranSubdirectory Use MinGW gfortran from VS if a fortran compiler is not found. The ‘add_fortran_subdirectory’ function adds a subdirectory to a project that contains a fortran only sub-project. The module will check the current compiler and see if it can support fortran. If no fortran compiler is found and the compiler is MSVC, then this mod‐ ule will find the MinGW gfortran. It will then use an external project to build with the MinGW tools. It will also create imported targets for the libraries created. This will only work if the fortran code is built into a dll, so BUILD_SHARED_LIBS is turned on in the project. In addition the CMAKE_GNUtoMS option is set to on, so that the MS .lib files are created. Usage is as follows: cmake_add_fortran_subdirectory( <subdir> # name of subdirectory PROJECT <project_name> # project name in subdir top CMakeLists.txt ARCHIVE_DIR <dir> # dir where project places .lib files RUNTIME_DIR <dir> # dir where project places .dll files LIBRARIES <lib>... # names of library targets to import LINK_LIBRARIES # link interface libraries for LIBRARIES [LINK_LIBS <lib> <dep>...]... CMAKE_COMMAND_LINE ... # extra command line flags to pass to cmake NO_EXTERNAL_INSTALL # skip installation of external project ) Relative paths in ARCHIVE_DIR and RUNTIME_DIR are interpreted with respect to the build directory corresponding to the source directory in which the function is invoked. Limitations: NO_EXTERNAL_INSTALL is required for forward compatibility with a future version that sup‐ ports installation of the external project binaries during “make install”. CMakeBackwardCompatibilityCXX define a bunch of backwards compatibility variables CMAKE_ANSI_CXXFLAGS - flag for ansi c++ CMAKE_HAS_ANSI_STRING_STREAM - has <strstream> include(TestForANSIStreamHeaders) include(CheckIncludeFileCXX) include(TestForSTDNamespace) include(TestForANSIForScope) CMakeDependentOption Macro to provide an option dependent on other options. This macro presents an option to the user only if a set of other conditions are true. When the option is not presented a default value is used, but any value set by the user is preserved for when the option is presented again. Example invocation: CMAKE_DEPENDENT_OPTION(USE_FOO "Use Foo" ON "USE_BAR;NOT USE_ZOT" OFF) If USE_BAR is true and USE_ZOT is false, this provides an option called USE_FOO that defaults to ON. Otherwise, it sets USE_FOO to OFF. If the status of USE_BAR or USE_ZOT ever changes, any value for the USE_FOO option is saved so that when the option is re-enabled it retains its old value. CMakeDetermineVSServicePack Deprecated. Do not use. The functionality of this module has been superseded by the CMAKE_<LANG>_COMPILER_VERSION variable that contains the compiler version number. Determine the Visual Studio service pack of the ‘cl’ in use. Usage: if(MSVC) include(CMakeDetermineVSServicePack) DetermineVSServicePack( my_service_pack ) if( my_service_pack ) message(STATUS "Detected: ${my_service_pack}") endif() endif() Function DetermineVSServicePack sets the given variable to one of the following values or an empty string if unknown: vc80, vc80sp1 vc90, vc90sp1 vc100, vc100sp1 vc110, vc110sp1, vc110sp2, vc110sp3, vc110sp4 CMakeExpandImportedTargets Deprecated. Do not use. This module was once needed to expand imported targets to the underlying libraries they reference on disk for use with the try_compile() and try_run() commands. These commands now support imported libraries in their LINK_LIBRARIES options (since CMake 2.8.11 for try_compile() and since CMake 3.2 for try_run()). This module does not support the policy CMP0022 NEW behavior or use of the INTER‐ FACE_LINK_LIBRARIES property because generator expressions cannot be evaluated during con‐ figuration. CMAKE_EXPAND_IMPORTED_TARGETS(<var> LIBRARIES lib1 lib2...libN [CONFIGURATION <config>]) CMAKE_EXPAND_IMPORTED_TARGETS() takes a list of libraries and replaces all imported tar‐ gets contained in this list with their actual file paths of the referenced libraries on disk, including the libraries from their link interfaces. If a CONFIGURATION is given, it uses the respective configuration of the imported targets if it exists. If no CONFIGURA‐ TION is given, it uses the first configuration from ${CMAKE_CONFIGURATION_TYPES} if set, otherwise ${CMAKE_BUILD_TYPE}. cmake_expand_imported_targets(expandedLibs LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} CONFIGURATION "${CMAKE_TRY_COMPILE_CONFIGURATION}" ) CMakeFindDependencyMacro find_dependency The find_dependency() macro wraps a find_package() call for a package dependency: find_dependency(<dep> [...]) It is designed to be used in a Package Configuration File (<package>Config.cmake). find_dependency forwards the correct parameters for QUIET and REQUIRED which were passed to the original find_package() call. Any additional arguments specified are forwarded to find_package(). If the dependency could not be found it sets an informative diagnostic message and calls return() to end processing of the calling package configuration file and return to the find_package() command that loaded it. NOTE: The call to return() makes this macro unsuitable to call from Find Modules. CMakeFindFrameworks helper module to find OSX frameworks This module reads hints about search locations from variables: CMAKE_FIND_FRAMEWORK_EXTRA_LOCATIONS - Extra directories CMakeFindPackageMode This file is executed by cmake when invoked with –find-package. It expects that the fol‐ lowing variables are set using -D: NAME name of the package COMPILER_ID the CMake compiler ID for which the result is, i.e. GNU/Intel/Clang/MSVC, etc. LANGUAGE language for which the result will be used, i.e. C/CXX/Fortan/ASM MODE EXIST only check for existence of the given package COMPILE print the flags needed for compiling an object file which uses the given package LINK print the flags needed for linking when using the given package QUIET if TRUE, don’t print anything CMakeForceCompiler Deprecated. Do not use. The macros provided by this module were once intended for use by cross-compiling toolchain files when CMake was not able to automatically detect the compiler identification. Since the introduction of this module, CMake’s compiler identification capabilities have improved and can now be taught to recognize any compiler. Furthermore, the suite of information CMake detects from a compiler is now too extensive to be provided by toolchain files using these macros. One common use case for this module was to skip CMake’s checks for a working compiler when using a cross-compiler that cannot link binaries without special flags or custom linker scripts. This case is now supported by setting the CMAKE_TRY_COMPILE_TARGET_TYPE variable in the toolchain file instead. ---- Macro CMAKE_FORCE_C_COMPILER has the following signature: CMAKE_FORCE_C_COMPILER(<compiler> <compiler-id>) It sets CMAKE_C_COMPILER to the given compiler and the cmake internal variable CMAKE_C_COMPILER_ID to the given compiler-id. It also bypasses the check for working com‐ piler and basic compiler information tests. Macro CMAKE_FORCE_CXX_COMPILER has the following signature: CMAKE_FORCE_CXX_COMPILER(<compiler> <compiler-id>) It sets CMAKE_CXX_COMPILER to the given compiler and the cmake internal variable CMAKE_CXX_COMPILER_ID to the given compiler-id. It also bypasses the check for working compiler and basic compiler information tests. Macro CMAKE_FORCE_Fortran_COMPILER has the following signature: CMAKE_FORCE_Fortran_COMPILER(<compiler> <compiler-id>) It sets CMAKE_Fortran_COMPILER to the given compiler and the cmake internal variable CMAKE_Fortran_COMPILER_ID to the given compiler-id. It also bypasses the check for work‐ ing compiler and basic compiler information tests. So a simple toolchain file could look like this: include (CMakeForceCompiler) set(CMAKE_SYSTEM_NAME Generic) CMAKE_FORCE_C_COMPILER (chc12 MetrowerksHicross) CMAKE_FORCE_CXX_COMPILER (chc12 MetrowerksHicross) CMakeGraphVizOptions The builtin graphviz support of CMake. Variables specific to the graphviz support CMake can generate graphviz files, showing the dependencies between the targets in a project and also external libraries which are linked against. When CMake is run with the --graphviz=foo.dot option, it will produce: · a foo.dot file showing all dependencies in the project · a foo.dot.<target> file for each target, file showing on which other targets the respec‐ tive target depends · a foo.dot.<target>.dependers file, showing which other targets depend on the respective target The different dependency types PUBLIC, PRIVATE and INTERFACE are represented as solid, dashed and dotted edges. This can result in huge graphs. Using the file CMakeGraphVizOptions.cmake the look and content of the generated graphs can be influenced. This file is searched first in CMAKE_BINARY_DIR and then in CMAKE_SOURCE_DIR. If found, it is read and the variables set in it are used to adjust options for the generated graphviz files. GRAPHVIZ_GRAPH_TYPE The graph type. · Mandatory : NO · Default : “digraph” Valid graph types are: · “graph” : Nodes are joined with lines · “digraph” : Nodes are joined with arrows showing direction · “strict graph” : Like “graph” but max one line between each node · “strict digraph” : Like “graph” but max one line between each node in each direc‐ tion GRAPHVIZ_GRAPH_NAME The graph name. · Mandatory : NO · Default : “GG” GRAPHVIZ_GRAPH_HEADER The header written at the top of the graphviz file. · Mandatory : NO · Default : “node [n fontsize = “12”];” GRAPHVIZ_NODE_PREFIX The prefix for each node in the graphviz file. · Mandatory : NO · Default : “node” GRAPHVIZ_EXECUTABLES Set this to FALSE to exclude executables from the generated graphs. · Mandatory : NO · Default : TRUE GRAPHVIZ_STATIC_LIBS Set this to FALSE to exclude static libraries from the generated graphs. · Mandatory : NO · Default : TRUE GRAPHVIZ_SHARED_LIBS Set this to FALSE to exclude shared libraries from the generated graphs. · Mandatory : NO · Default : TRUE GRAPHVIZ_MODULE_LIBS Set this to FALSE to exclude module libraries from the generated graphs. · Mandatory : NO · Default : TRUE GRAPHVIZ_EXTERNAL_LIBS Set this to FALSE to exclude external libraries from the generated graphs. · Mandatory : NO · Default : TRUE GRAPHVIZ_IGNORE_TARGETS A list of regular expressions for ignoring targets. · Mandatory : NO · Default : empty GRAPHVIZ_GENERATE_PER_TARGET Set this to FALSE to exclude per target graphs foo.dot.<target>. · Mandatory : NO · Default : TRUE GRAPHVIZ_GENERATE_DEPENDERS Set this to FALSE to exclude depender graphs foo.dot.<target>.dependers. · Mandatory : NO · Default : TRUE CMakePackageConfigHelpers Helpers functions for creating config files that can be included by other projects to find and use a package. Adds the configure_package_config_file() and write_basic_package_version_file() commands. Generating a Package Configuration File configure_package_config_file Create a config file for a project: configure_package_config_file(<input> <output> INSTALL_DESTINATION <path> [PATH_VARS <var1> <var2> ... <varN>] [NO_SET_AND_CHECK_MACRO] [NO_CHECK_REQUIRED_COMPONENTS_MACRO] [INSTALL_PREFIX <path>] ) configure_package_config_file() should be used instead of the plain configure_file() com‐ mand when creating the <Name>Config.cmake or <Name>-config.cmake file for installing a project or library. It helps making the resulting package relocatable by avoiding hard‐ coded paths in the installed Config.cmake file. In a FooConfig.cmake file there may be code like this to make the install destinations know to the using project: set(FOO_INCLUDE_DIR "@CMAKE_INSTALL_FULL_INCLUDEDIR@" ) set(FOO_DATA_DIR "@CMAKE_INSTALL_PREFIX@/@RELATIVE_DATA_INSTALL_DIR@" ) set(FOO_ICONS_DIR "@CMAKE_INSTALL_PREFIX@/share/icons" ) #...logic to determine installedPrefix from the own location... set(FOO_CONFIG_DIR "${installedPrefix}/@CONFIG_INSTALL_DIR@" ) All 4 options shown above are not sufficient, since the first 3 hardcode the absolute directory locations, and the 4th case works only if the logic to determine the installed‐ Prefix is correct, and if CONFIG_INSTALL_DIR contains a relative path, which in general cannot be guaranteed. This has the effect that the resulting FooConfig.cmake file would work poorly under Windows and OSX, where users are used to choose the install location of a binary package at install time, independent from how CMAKE_INSTALL_PREFIX was set at build/cmake time. Using configure_package_config_file helps. If used correctly, it makes the resulting FooConfig.cmake file relocatable. Usage: 1. write a FooConfig.cmake.in file as you are used to 2. insert a line containing only the string @PACKAGE_INIT@ 3. instead of set(FOO_DIR "@SOME_INSTALL_DIR@"), use set(FOO_DIR "@PACK‐ AGE_SOME_INSTALL_DIR@") (this must be after the @PACKAGE_INIT@ line) 4. instead of using the normal configure_file(), use configure_package_config_file() The <input> and <output> arguments are the input and output file, the same way as in con‐ figure_file(). The <path> given to INSTALL_DESTINATION must be the destination where the FooConfig.cmake file will be installed to. This path can either be absolute, or relative to the INSTALL_PREFIX path. The variables <var1> to <varN> given as PATH_VARS are the variables which contain install destinations. For each of them the macro will create a helper variable PACKAGE_<var...>. These helper variables must be used in the FooConfig.cmake.in file for setting the installed location. They are calculated by configure_package_config_file so that they are always relative to the installed location of the package. This works both for relative and also for absolute locations. For absolute locations it works only if the absolute location is a subdirectory of INSTALL_PREFIX. If the INSTALL_PREFIX argument is passed, this is used as base path to calculate all the relative paths. The <path> argument must be an absolute path. If this argument is not passed, the CMAKE_INSTALL_PREFIX variable will be used instead. The default value is good when generating a FooConfig.cmake file to use your package from the install tree. When generating a FooConfig.cmake file to use your package from the build tree this option should be used. By default configure_package_config_file also generates two helper macros, set_and_check() and check_required_components() into the FooConfig.cmake file. set_and_check() should be used instead of the normal set() command for setting directories and file locations. Additionally to setting the variable it also checks that the refer‐ enced file or directory actually exists and fails with a FATAL_ERROR otherwise. This makes sure that the created FooConfig.cmake file does not contain wrong references. When using the NO_SET_AND_CHECK_MACRO, this macro is not generated into the FooConfig.cmake file. check_required_components(<package_name>) should be called at the end of the FooCon‐ fig.cmake file if the package supports components. This macro checks whether all requested, non-optional components have been found, and if this is not the case, sets the Foo_FOUND variable to FALSE, so that the package is considered to be not found. It does that by testing the Foo_<Component>_FOUND variables for all requested required components. When using the NO_CHECK_REQUIRED_COMPONENTS_MACRO option, this macro is not generated into the FooConfig.cmake file. For an example see below the documentation for write_basic_package_version_file(). Generating a Package Version File write_basic_package_version_file Create a version file for a project: write_basic_package_version_file(<filename> [VERSION <major.minor.patch>] COMPATIBILITY <AnyNewerVersion|SameMajorVersion|ExactVersion> ) Writes a file for use as <package>ConfigVersion.cmake file to <filename>. See the docu‐ mentation of find_package() for details on this. <filename> is the output filename, it should be in the build tree. <major.minor.patch> is the version number of the project to be installed. If no VERSION is given, the PROJECT_VERSION variable is used. If this hasn’t been set, it errors out. The COMPATIBILITY mode AnyNewerVersion means that the installed package version will be considered compatible if it is newer or exactly the same as the requested version. This mode should be used for packages which are fully backward compatible, also across major versions. If SameMajorVersion is used instead, then the behaviour differs from AnyNew‐ erVersion in that the major version number must be the same as requested, e.g. version 2.0 will not be considered compatible if 1.0 is requested. This mode should be used for packages which guarantee backward compatibility within the same major version. If ExactVersion is used, then the package is only considered compatible if the requested ver‐ sion matches exactly its own version number (not considering the tweak version). For example, version 1.2.3 of a package is only considered compatible to requested version 1.2.3. This mode is for packages without compatibility guarantees. If your project has more elaborated version matching rules, you will need to write your own custom ConfigVer‐ sion.cmake file instead of using this macro. Internally, this macro executes configure_file() to create the resulting version file. Depending on the COMPATIBLITY, either the file BasicConfigVersion-SameMajorVer‐ sion.cmake.in or BasicConfigVersion-AnyNewerVersion.cmake.in is used. Please note that these two files are internal to CMake and you should not call configure_file() on them yourself, but they can be used as starting point to create more sophisticted custom Con‐ figVersion.cmake files. Example Generating Package Files Example using both configure_package_config_file() and write_basic_package_version_file(): CMakeLists.txt: set(INCLUDE_INSTALL_DIR include/ ... CACHE ) set(LIB_INSTALL_DIR lib/ ... CACHE ) set(SYSCONFIG_INSTALL_DIR etc/foo/ ... CACHE ) #... include(CMakePackageConfigHelpers) configure_package_config_file(FooConfig.cmake.in ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake INSTALL_DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake PATH_VARS INCLUDE_INSTALL_DIR SYSCONFIG_INSTALL_DIR) write_basic_package_version_file( ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake VERSION 1.2.3 COMPATIBILITY SameMajorVersion ) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake ) FooConfig.cmake.in: set(FOO_VERSION x.y.z) ... @PACKAGE_INIT@ ... set_and_check(FOO_INCLUDE_DIR "@PACKAGE_INCLUDE_INSTALL_DIR@") set_and_check(FOO_SYSCONFIG_DIR "@PACKAGE_SYSCONFIG_INSTALL_DIR@") check_required_components(Foo) CMakeParseArguments This module once implemented the cmake_parse_arguments() command that is now implemented natively by CMake. It is now an empty placeholder for compatibility with projects that include it to get the command from CMake 3.4 and lower. CMakePrintHelpers Convenience macros for printing properties and variables, useful e.g. for debugging. CMAKE_PRINT_PROPERTIES([TARGETS target1 .. targetN] [SOURCES source1 .. sourceN] [DIRECTORIES dir1 .. dirN] [TESTS test1 .. testN] [CACHE_ENTRIES entry1 .. entryN] PROPERTIES prop1 .. propN ) This macro prints the values of the properties of the given targets, source files, direc‐ tories, tests or cache entries. Exactly one of the scope keywords must be used. Example: cmake_print_properties(TARGETS foo bar PROPERTIES LOCATION INTERFACE_INCLUDE_DIRS) This will print the LOCATION and INTERFACE_INCLUDE_DIRS properties for both targets foo and bar. CMAKE_PRINT_VARIABLES(var1 var2 .. varN) This macro will print the name of each variable followed by its value. Example: cmake_print_variables(CMAKE_C_COMPILER CMAKE_MAJOR_VERSION DOES_NOT_EXIST) Gives: -- CMAKE_C_COMPILER="/usr/bin/gcc" ; CMAKE_MAJOR_VERSION="2" ; DOES_NOT_EXIST="" CMakePrintSystemInformation print system information This file can be used for diagnostic purposes just include it in a project to see various internal CMake variables. CMakePushCheckState This module defines three macros: CMAKE_PUSH_CHECK_STATE() CMAKE_POP_CHECK_STATE() and CMAKE_RESET_CHECK_STATE() These macros can be used to save, restore and reset (i.e., clear contents) the state of the variables CMAKE_REQUIRED_FLAGS, CMAKE_REQUIRED_DEFINITIONS, CMAKE_REQUIRED_LIBRARIES, CMAKE_REQUIRED_INCLUDES and CMAKE_EXTRA_INCLUDE_FILES used by the various Check-files coming with CMake, like e.g. check_function_exists() etc. The variable contents are pushed on a stack, pushing multiple times is supported. This is useful e.g. when executing such tests in a Find-module, where they have to be set, but after the Find-module has been executed they should have the same value as they had before. CMAKE_PUSH_CHECK_STATE() macro receives optional argument RESET. Whether it’s specified, CMAKE_PUSH_CHECK_STATE() will set all CMAKE_REQUIRED_* variables to empty values, same as CMAKE_RESET_CHECK_STATE() call will do. Usage: cmake_push_check_state(RESET) set(CMAKE_REQUIRED_DEFINITIONS -DSOME_MORE_DEF) check_function_exists(...) cmake_reset_check_state() set(CMAKE_REQUIRED_DEFINITIONS -DANOTHER_DEF) check_function_exists(...) cmake_pop_check_state() CMakeVerifyManifest CMakeVerifyManifest.cmake This script is used to verify that embedded manifests and side by side manifests for a project match. To run this script, cd to a directory and run the script with cmake -P. On the command line you can pass in versions that are OK even if not found in the .mani‐ fest files. For example, cmake -Dallow_versions=8.0.50608.0 -PCmakeVerifyManifest.cmake could be used to allow an embedded manifest of 8.0.50608.0 to be used in a project even if that version was not found in the .manifest file. CPackArchive Archive CPack generator that supports packaging of sources and binaries in different for‐ mats: · 7Z - 7zip - (.7z) · TBZ2 (.tar.bz2) · TGZ (.tar.gz) · TXZ (.tar.xz) · TZ (.tar.Z) · ZIP (.zip) Variables specific to CPack Archive generator CPACK_ARCHIVE_FILE_NAME CPACK_ARCHIVE_<component>_FILE_NAME Package file name without extension which is added automatically depending on the archive format. · Mandatory : YES · Default <CPACK_PACKAGE_FILE_NAME>[-<component>].<extension> with spaces replaced by ‘-‘ CPACK_ARCHIVE_COMPONENT_INSTALL Enable component packaging for CPackArchive · Mandatory : NO · Default : OFF If enabled (ON) multiple packages are generated. By default a single package con‐ taining files of all components is generated. CPackBundle CPack Bundle generator (Mac OS X) specific options Variables specific to CPack Bundle generator Installers built on Mac OS X using the Bundle generator use the aforementioned DragNDrop (CPACK_DMG_xxx) variables, plus the following Bundle-specific parameters (CPACK_BUN‐ DLE_xxx). CPACK_BUNDLE_NAME The name of the generated bundle. This appears in the OSX finder as the bundle name. Required. CPACK_BUNDLE_PLIST Path to an OSX plist file that will be used for the generated bundle. This assumes that the caller has generated or specified their own Info.plist file. Required. CPACK_BUNDLE_ICON Path to an OSX icon file that will be used as the icon for the generated bundle. This is the icon that appears in the OSX finder for the bundle, and in the OSX dock when the bundle is opened. Required. CPACK_BUNDLE_STARTUP_COMMAND Path to a startup script. This is a path to an executable or script that will be run whenever an end-user double-clicks the generated bundle in the OSX Finder. Optional. CPACK_BUNDLE_APPLE_CERT_APP The name of your Apple supplied code signing certificate for the application. The name usually takes the form “Developer ID Application: [Name]” or “3rd Party Mac Developer Application: [Name]”. If this variable is not set the application will not be signed. CPACK_BUNDLE_APPLE_ENTITLEMENTS The name of the plist file that contains your apple entitlements for sandboxing your application. This file is required for submission to the Mac App Store. CPACK_BUNDLE_APPLE_CODESIGN_FILES A list of additional files that you wish to be signed. You do not need to list the main application folder, or the main executable. You should list any frameworks and plugins that are included in your app bundle. CPACK_BUNDLE_APPLE_CODESIGN_PARAMETER Additional parameter that will passed to codesign. Default value: “–deep -f” CPACK_COMMAND_CODESIGN Path to the codesign(1) command used to sign applications with an Apple cert. This variable can be used to override the automatically detected command (or specify its location if the auto-detection fails to find it.) CPackComponent Build binary and source package installers Variables concerning CPack Components The CPackComponent module is the module which handles the component part of CPack. See CPack module for general information about CPack. For certain kinds of binary installers (including the graphical installers on Mac OS X and Windows), CPack generates installers that allow users to select individual application components to install. The contents of each of the components are identified by the COM‐ PONENT argument of CMake’s INSTALL command. These components can be annotated with user-friendly names and descriptions, inter-component dependencies, etc., and grouped in various ways to customize the resulting installer. See the cpack_add_* commands, described below, for more information about component-specific installations. Component-specific installation allows users to select specific sets of components to install during the install process. Installation components are identified by the COMPO‐ NENT argument of CMake’s INSTALL commands, and should be further described by the follow‐ ing CPack commands: CPACK_COMPONENTS_ALL The list of component to install. The default value of this variable is computed by CPack and contains all components defined by the project. The user may set it to only include the specified compo‐ nents. Instead of specifying all the desired components, it is possible to obtain a list of all defined components and then remove the unwanted ones from the list. The get_cmake_property() command can be used to obtain the COMPONENTS property, then the list(REMOVE_ITEM) command can be used to remove the unwanted ones. For example, to use all defined components except foo and bar: get_cmake_property(CPACK_COMPONENTS_ALL COMPONENTS) list(REMOVE_ITEM CPACK_COMPONENTS_ALL "foo" "bar") CPACK_<GENNAME>_COMPONENT_INSTALL Enable/Disable component install for CPack generator <GENNAME>. Each CPack Generator (RPM, DEB, ARCHIVE, NSIS, DMG, etc…) has a legacy default behavior. e.g. RPM builds monolithic whereas NSIS builds component. One can change the default behavior by setting this variable to 0/1 or OFF/ON. CPACK_COMPONENTS_GROUPING Specify how components are grouped for multi-package component-aware CPack genera‐ tors. Some generators like RPM or ARCHIVE family (TGZ, ZIP, …) generates several packages files when asked for component packaging. They group the component differently depending on the value of this variable: · ONE_PER_GROUP (default): creates one package file per component group · ALL_COMPONENTS_IN_ONE : creates a single package with all (requested) component · IGNORE : creates one package per component, i.e. IGNORE component group One can specify different grouping for different CPack generator by using a CPACK_PROJECT_CONFIG_FILE. CPACK_COMPONENT_<compName>_DISPLAY_NAME The name to be displayed for a component. CPACK_COMPONENT_<compName>_DESCRIPTION The description of a component. CPACK_COMPONENT_<compName>_GROUP The group of a component. CPACK_COMPONENT_<compName>_DEPENDS The dependencies (list of components) on which this component depends. CPACK_COMPONENT_<compName>_HIDDEN True if this component is hidden from the user. CPACK_COMPONENT_<compName>_REQUIRED True if this component is required. CPACK_COMPONENT_<compName>_DISABLED True if this component is not selected to be installed by default. cpack_add_component Describes a CPack installation component named by the COMPONENT argument to a CMake INSTALL command. cpack_add_component(compname [DISPLAY_NAME name] [DESCRIPTION description] [HIDDEN | REQUIRED | DISABLED ] [GROUP group] [DEPENDS comp1 comp2 ... ] [INSTALL_TYPES type1 type2 ... ] [DOWNLOADED] [ARCHIVE_FILE filename] [PLIST filename]) The cmake_add_component command describes an installation component, which the user can opt to install or remove as part of the graphical installation process. compname is the name of the component, as provided to the COMPONENT argument of one or more CMake INSTALL commands. DISPLAY_NAME is the displayed name of the component, used in graphical installers to dis‐ play the component name. This value can be any string. DESCRIPTION is an extended description of the component, used in graphical installers to give the user additional information about the component. Descriptions can span multiple lines using \n as the line separator. Typically, these descriptions should be no more than a few lines long. HIDDEN indicates that this component will be hidden in the graphical installer, so that the user cannot directly change whether it is installed or not. REQUIRED indicates that this component is required, and therefore will always be installed. It will be visible in the graphical installer, but it cannot be unselected. (Typically, required components are shown greyed out). DISABLED indicates that this component should be disabled (unselected) by default. The user is free to select this component for installation, unless it is also HIDDEN. DEPENDS lists the components on which this component depends. If this component is selected, then each of the components listed must also be selected. The dependency infor‐ mation is encoded within the installer itself, so that users cannot install inconsistent sets of components. GROUP names the component group of which this component is a part. If not provided, the component will be a standalone component, not part of any component group. Component groups are described with the cpack_add_component_group command, detailed below. INSTALL_TYPES lists the installation types of which this component is a part. When one of these installations types is selected, this component will automatically be selected. Installation types are described with the cpack_add_install_type command, detailed below. DOWNLOADED indicates that this component should be downloaded on-the-fly by the installer, rather than packaged in with the installer itself. For more information, see the cpack_configure_downloads command. ARCHIVE_FILE provides a name for the archive file created by CPack to be used for down‐ loaded components. If not supplied, CPack will create a file with some name based on CPACK_PACKAGE_FILE_NAME and the name of the component. See cpack_configure_downloads for more information. PLIST gives a filename that is passed to pkgbuild with the --component-plist argument when using the productbuild generator. cpack_add_component_group Describes a group of related CPack installation components. cpack_add_component_group(groupname [DISPLAY_NAME name] [DESCRIPTION description] [PARENT_GROUP parent] [EXPANDED] [BOLD_TITLE]) The cpack_add_component_group describes a group of installation components, which will be placed together within the listing of options. Typically, component groups allow the user to select/deselect all of the components within a single group via a single group-level option. Use component groups to reduce the complexity of installers with many options. groupname is an arbitrary name used to identify the group in the GROUP argument of the cpack_add_component command, which is used to place a component in a group. The name of the group must not conflict with the name of any component. DISPLAY_NAME is the displayed name of the component group, used in graphical installers to display the component group name. This value can be any string. DESCRIPTION is an extended description of the component group, used in graphical install‐ ers to give the user additional information about the components within that group. Descriptions can span multiple lines using \n as the line separator. Typically, these descriptions should be no more than a few lines long. PARENT_GROUP, if supplied, names the parent group of this group. Parent groups are used to establish a hierarchy of groups, providing an arbitrary hierarchy of groups. EXPANDED indicates that, by default, the group should show up as “expanded”, so that the user immediately sees all of the components within the group. Otherwise, the group will initially show up as a single entry. BOLD_TITLE indicates that the group title should appear in bold, to call the user’s atten‐ tion to the group. cpack_add_install_type Add a new installation type containing a set of predefined component selections to the graphical installer. cpack_add_install_type(typename [DISPLAY_NAME name]) The cpack_add_install_type command identifies a set of preselected components that repre‐ sents a common use case for an application. For example, a “Developer” install type might include an application along with its header and library files, while an “End user” install type might just include the application’s executable. Each component identifies itself with one or more install types via the INSTALL_TYPES argument to cpack_add_compo‐ nent. DISPLAY_NAME is the displayed name of the install type, which will typically show up in a drop-down box within a graphical installer. This value can be any string. cpack_configure_downloads Configure CPack to download selected components on-the-fly as part of the installation process. cpack_configure_downloads(site [UPLOAD_DIRECTORY dirname] [ALL] [ADD_REMOVE|NO_ADD_REMOVE]) The cpack_configure_downloads command configures installation-time downloads of selected components. For each downloadable component, CPack will create an archive containing the contents of that component, which should be uploaded to the given site. When the user selects that component for installation, the installer will download and extract the com‐ ponent in place. This feature is useful for creating small installers that only download the requested components, saving bandwidth. Additionally, the installers are small enough that they will be installed as part of the normal installation process, and the “Change” button in Windows Add/Remove Programs control panel will allow one to add or remove parts of the application after the original installation. On Windows, the downloaded-components functionality requires the ZipDLL plug-in for NSIS, available at: http://nsis.sourceforge.net/ZipDLL_plug-in On Mac OS X, installers that download components on-the-fly can only be built and installed on system using Mac OS X 10.5 or later. The site argument is a URL where the archives for downloadable components will reside, e.g., https://cmake.org/files/2.6.1/installer/ All of the archives produced by CPack should be uploaded to that location. UPLOAD_DIRECTORY is the local directory where CPack will create the various archives for each of the components. The contents of this directory should be uploaded to a location accessible by the URL given in the site argument. If omitted, CPack will use the direc‐ tory CPackUploads inside the CMake binary directory to store the generated archives. The ALL flag indicates that all components be downloaded. Otherwise, only those compo‐ nents explicitly marked as DOWNLOADED or that have a specified ARCHIVE_FILE will be down‐ loaded. Additionally, the ALL option implies ADD_REMOVE (unless NO_ADD_REMOVE is speci‐ fied). ADD_REMOVE indicates that CPack should install a copy of the installer that can be called from Windows’ Add/Remove Programs dialog (via the “Modify” button) to change the set of installed components. NO_ADD_REMOVE turns off this behavior. This option is ignored on Mac OS X. CPackCygwin Cygwin CPack generator (Cygwin). Variables specific to CPack Cygwin generator The following variable is specific to installers build on and/or for Cygwin: CPACK_CYGWIN_PATCH_NUMBER The Cygwin patch number. FIXME: This documentation is incomplete. CPACK_CYGWIN_PATCH_FILE The Cygwin patch file. FIXME: This documentation is incomplete. CPACK_CYGWIN_BUILD_SCRIPT The Cygwin build script. FIXME: This documentation is incomplete. CPackDeb The built in (binary) CPack Deb generator (Unix only) Variables specific to CPack Debian (DEB) generator CPackDeb may be used to create Deb package using CPack. CPackDeb is a CPack generator thus it uses the CPACK_XXX variables used by CPack. CPackDeb generator should work on any Linux host but it will produce better deb package when Debian specific tools dpkg-xxx are usable on the build system. CPackDeb has specific features which are controlled by the specifics CPACK_DEBIAN_XXX variables. CPACK_DEBIAN_<COMPONENT>_XXXX variables may be used in order to have component specific values. Note however that <COMPONENT> refers to the grouping name written in upper case. It may be either a component name or a component GROUP name. Here are some CPackDeb wiki resources that are here for historic reasons and are no longer maintained but may still prove useful: · https://cmake.org/Wiki/CMake:CPackConfiguration · https://cmake.org/Wiki/CMake:CPackPackageGenerators#DEB_.28UNIX_only.29 List of CPackDEB specific variables: CPACK_DEB_COMPONENT_INSTALL Enable component packaging for CPackDEB · Mandatory : NO · Default : OFF If enabled (ON) multiple packages are generated. By default a single package con‐ taining files of all components is generated. CPACK_DEBIAN_PACKAGE_NAME CPACK_DEBIAN_<COMPONENT>_PACKAGE_NAME Set Package control field (variable is automatically transformed to lower case). · Mandatory : YES · Default : · CPACK_PACKAGE_NAME for non-component based installations · CPACK_DEBIAN_PACKAGE_NAME suffixed with -<COMPONENT> for component-based installations. See https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Source CPACK_DEBIAN_FILE_NAME CPACK_DEBIAN_<COMPONENT>_FILE_NAME Package file name. · Mandatory : YES · Default : <CPACK_PACKAGE_FILE_NAME>[-<component>].deb This may be set to DEB-DEFAULT to allow CPackDeb to generate package file name by itself in deb format: <PackageName>_<VersionNumber>-<DebianRevisionNumber>_<DebianArchitecture>.deb Alternatively provided package file name must end with either .deb or .ipk suffix. NOTE: Preferred setting of this variable is DEB-DEFAULT but for backward compatibility with CPackDeb in CMake prior to version 3.6 this feature is disabled by default. NOTE: By using non default filenames duplicate names may occur. Duplicate files get overwritten and it is up to the packager to set the variables in a manner that will prevent such errors. CPACK_DEBIAN_PACKAGE_EPOCH The Debian package epoch · Mandatory : No · Default : - Optional number that should be incremented when changing versioning schemas or fix‐ ing mistakes in the version numbers of older packages. CPACK_DEBIAN_PACKAGE_VERSION The Debian package version · Mandatory : YES · Default : CPACK_PACKAGE_VERSION This variable may contain only alphanumerics (A-Za-z0-9) and the characters CPACK_DEBIAN_PACKAGE_RELEASE is not set then hyphens are not allowed. NOTE: For backward compatibility with CMake 3.9 and lower a failed test of this vari‐ able’s content is not a hard error when both CPACK_DEBIAN_PACKAGE_RELEASE and CPACK_DEBIAN_PACKAGE_EPOCH variables are not set. An author warning is reported instead. CPACK_DEBIAN_PACKAGE_RELEASE The Debian package release - Debian revision number. · Mandatory : No · Default : - This is the numbering of the DEB package itself, i.e. the version of the packaging and not the version of the content (see CPACK_DEBIAN_PACKAGE_VERSION). One may change the default value if the previous packaging was buggy and/or you want to put here a fancy Linux distro specific numbering. CPACK_DEBIAN_PACKAGE_ARCHITECTURE CPACK_DEBIAN_<COMPONENT>_PACKAGE_ARCHITECTURE The Debian package architecture · Mandatory : YES · Default : Output of dpkg --print-architecture (or i386 if dpkg is not found) CPACK_DEBIAN_PACKAGE_DEPENDS CPACK_DEBIAN_<COMPONENT>_PACKAGE_DEPENDS Sets the Debian dependencies of this package. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_DEPENDS for component-based installations. NOTE: If CPACK_DEBIAN_PACKAGE_SHLIBDEPS or more specifically CPACK_DEBIAN_<COMPONENT>_PACKAGE_SHLIBDEPS is set for this component, the dis‐ covered dependencies will be appended to CPACK_DEBIAN_<COMPONENT>_PACKAGE_DEPENDS instead of CPACK_DEBIAN_PACKAGE_DEPENDS. If CPACK_DEBIAN_<COMPONENT>_PACKAGE_DEPENDS is an empty string, only the automatically discovered dependencies will be set for this component. Example: set(CPACK_DEBIAN_PACKAGE_DEPENDS "libc6 (>= 2.3.1-6), libc6 (< 2.4)") CPACK_DEBIAN_ENABLE_COMPONENT_DEPENDS Sets inter component dependencies if listed with CPACK_COMPONENT_<compName>_DEPENDS variables. · Mandatory : NO · Default : - CPACK_DEBIAN_PACKAGE_MAINTAINER The Debian package maintainer · Mandatory : YES · Default : CPACK_PACKAGE_CONTACT CPACK_DEBIAN_PACKAGE_DESCRIPTION CPACK_COMPONENT_<COMPONENT>_DESCRIPTION The Debian package description · Mandatory : YES · Default : · CPACK_DEBIAN_PACKAGE_DESCRIPTION if set or · CPACK_PACKAGE_DESCRIPTION_SUMMARY CPACK_DEBIAN_PACKAGE_SECTION CPACK_DEBIAN_<COMPONENT>_PACKAGE_SECTION Set Section control field e.g. admin, devel, doc, … · Mandatory : YES · Default : “devel” See https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections CPACK_DEBIAN_ARCHIVE_TYPE The archive format used for creating the Debian package. · Mandatory : YES · Default : “paxr” Possible values are: · paxr · gnutar NOTE: Default pax archive format is the most portable format and generates packages that do not treat sparse files specially. GNU tar format on the other hand sup‐ ports longer filenames. CPACK_DEBIAN_COMPRESSION_TYPE The compression used for creating the Debian package. · Mandatory : YES · Default : “gzip” Possible values are: · lzma · xz · bzip2 · gzip CPACK_DEBIAN_PACKAGE_PRIORITY CPACK_DEBIAN_<COMPONENT>_PACKAGE_PRIORITY Set Priority control field e.g. required, important, standard, optional, extra · Mandatory : YES · Default : “optional” See https://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities CPACK_DEBIAN_PACKAGE_HOMEPAGE The URL of the web site for this package, preferably (when applicable) the site from which the original source can be obtained and any additional upstream documen‐ tation or information may be found. · Mandatory : NO · Default : - NOTE: The content of this field is a simple URL without any surrounding characters such as <>. CPACK_DEBIAN_PACKAGE_SHLIBDEPS CPACK_DEBIAN_<COMPONENT>_PACKAGE_SHLIBDEPS May be set to ON in order to use dpkg-shlibdeps to generate better package depen‐ dency list. · Mandatory : NO · Default : · CPACK_DEBIAN_PACKAGE_SHLIBDEPS if set or · OFF NOTE: You may need set CMAKE_INSTALL_RPATH to an appropriate value if you use this feature, because if you don’t dpkg-shlibdeps may fail to find your own shared libs. See https://cmake.org/Wiki/CMake_RPATH_handling. CPACK_DEBIAN_PACKAGE_DEBUG May be set when invoking cpack in order to trace debug information during CPackDeb run. · Mandatory : NO · Default : - CPACK_DEBIAN_PACKAGE_PREDEPENDS CPACK_DEBIAN_<COMPONENT>_PACKAGE_PREDEPENDS Sets the Pre-Depends field of the Debian package. Like Depends, except that it also forces dpkg to complete installation of the packages named before even start‐ ing the installation of the package which declares the pre-dependency. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_PREDEPENDS for component-based installations. See http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps CPACK_DEBIAN_PACKAGE_ENHANCES CPACK_DEBIAN_<COMPONENT>_PACKAGE_ENHANCES Sets the Enhances field of the Debian package. Similar to Suggests but works in the opposite direction: declares that a package can enhance the functionality of another package. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_ENHANCES for component-based installations. See http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps CPACK_DEBIAN_PACKAGE_BREAKS CPACK_DEBIAN_<COMPONENT>_PACKAGE_BREAKS Sets the Breaks field of the Debian package. When a binary package (P) declares that it breaks other packages (B), dpkg will not allow the package (P) which declares Breaks be unpacked unless the packages that will be broken (B) are decon‐ figured first. As long as the package (P) is configured, the previously deconfig‐ ured packages (B) cannot be reconfigured again. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_BREAKS for component-based installations. See https://www.debian.org/doc/debian-policy/ch-relationships.html#s-breaks CPACK_DEBIAN_PACKAGE_CONFLICTS CPACK_DEBIAN_<COMPONENT>_PACKAGE_CONFLICTS Sets the Conflicts field of the Debian package. When one binary package declares a conflict with another using a Conflicts field, dpkg will not allow them to be unpacked on the system at the same time. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_CONFLICTS for component-based installations. See https://www.debian.org/doc/debian-policy/ch-relationships.html#s-conflicts NOTE: This is a stronger restriction than Breaks, which prevents the broken package from being configured while the breaking package is in the “Unpacked” state but allows both packages to be unpacked at the same time. CPACK_DEBIAN_PACKAGE_PROVIDES CPACK_DEBIAN_<COMPONENT>_PACKAGE_PROVIDES Sets the Provides field of the Debian package. A virtual package is one which appears in the Provides control field of another package. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_PROVIDES for component-based installations. See https://www.debian.org/doc/debian-policy/ch-relationships.html#s-virtual CPACK_DEBIAN_PACKAGE_REPLACES CPACK_DEBIAN_<COMPONENT>_PACKAGE_REPLACES Sets the Replaces field of the Debian package. Packages can declare in their con‐ trol file that they should overwrite files in certain other packages, or completely replace other packages. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_REPLACES for component-based installations. See http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps CPACK_DEBIAN_PACKAGE_RECOMMENDS CPACK_DEBIAN_<COMPONENT>_PACKAGE_RECOMMENDS Sets the Recommends field of the Debian package. Allows packages to declare a strong, but not absolute, dependency on other packages. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_RECOMMENDS for component-based installations. See http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps CPACK_DEBIAN_PACKAGE_SUGGESTS CPACK_DEBIAN_<COMPONENT>_PACKAGE_SUGGESTS Sets the Suggests field of the Debian package. Allows packages to declare a sug‐ gested package install grouping. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_SUGGESTS for component-based installations. See http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps CPACK_DEBIAN_PACKAGE_GENERATE_SHLIBS · Mandatory : NO · Default : OFF Allows to generate shlibs control file automatically. Compatibility is defined by CPACK_DEBIAN_PACKAGE_GENERATE_SHLIBS_POLICY variable value. NOTE: Libraries are only considered if they have both library name and version set. This can be done by setting SOVERSION property with set_target_properties() com‐ mand. CPACK_DEBIAN_PACKAGE_GENERATE_SHLIBS_POLICY Compatibility policy for auto-generated shlibs control file. · Mandatory : NO · Default : “=” Defines compatibility policy for auto-generated shlibs control file. Possible val‐ ues: “=”, “>=” See https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-shlibdeps CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA CPACK_DEBIAN_<COMPONENT>_PACKAGE_CONTROL_EXTRA This variable allow advanced user to add custom script to the control.tar.gz. Typ‐ ical usage is for conffiles, postinst, postrm, prerm. · Mandatory : NO · Default : - Usage: set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${CMAKE_CURRENT_SOURCE_DIR/prerm;${CMAKE_CURRENT_SOURCE_DIR}/postrm") NOTE: The original permissions of the files will be used in the final package unless the variable CPACK_DEBIAN_PACKAGE_CONTROL_STRICT_PERMISSION is set. In particu‐ lar, the scripts should have the proper executable flag prior to the generation of the package. CPACK_DEBIAN_PACKAGE_CONTROL_STRICT_PERMISSION CPACK_DEBIAN_<COMPONENT>_PACKAGE_CONTROL_STRICT_PERMISSION This variable indicates if the Debian policy on control files should be strictly followed. · Mandatory : NO · Default : FALSE Usage: set(CPACK_DEBIAN_PACKAGE_CONTROL_STRICT_PERMISSION TRUE) NOTE: This overrides the permissions on the original files, following the rules set by Debian policy https://www.debian.org/doc/debian-policy/ch-files.html#s-permissions-owners CPACK_DEBIAN_PACKAGE_SOURCE CPACK_DEBIAN_<COMPONENT>_PACKAGE_SOURCE Sets the Source field of the binary Debian package. When the binary package name is not the same as the source package name (in particular when several compo‐ nents/binaries are generated from one source) the source from which the binary has been generated should be indicated with the field Source. · Mandatory : NO · Default : · An empty string for non-component based installations · CPACK_DEBIAN_PACKAGE_SOURCE for component-based installations. See https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Source NOTE: This value is not interpreted. It is possible to pass an optional revision num‐ ber of the referenced source package as well. Building Debian packages on Windows To communicate UNIX file permissions from the install stage to the CPack DEB generator the “cmake_mode_t” NTFS alternate data stream (ADT) is used. When a filesystem without ADT support is used only owner read/write permissions can be preserved. CPackDMG DragNDrop CPack generator (Mac OS X). Variables specific to CPack DragNDrop generator The following variables are specific to the DragNDrop installers built on Mac OS X: CPACK_DMG_VOLUME_NAME The volume name of the generated disk image. Defaults to CPACK_PACKAGE_FILE_NAME. CPACK_DMG_FORMAT The disk image format. Common values are UDRO (UDIF read-only), UDZO (UDIF zlib-compressed) or UDBZ (UDIF bzip2-compressed). Refer to hdiutil(1) for more information on other available formats. Defaults to UDZO. CPACK_DMG_DS_STORE Path to a custom DS_Store file. This .DS_Store file e.g. can be used to specify the Finder window position/geometry and layout (such as hidden toolbars, placement of the icons etc.). This file has to be generated by the Finder (either manually or through AppleScript) using a normal folder from which the .DS_Store file can then be extracted. CPACK_DMG_DS_STORE_SETUP_SCRIPT Path to a custom AppleScript file. This AppleScript is used to generate a .DS_Store file which specifies the Finder window position/geometry and layout (such as hidden toolbars, placement of the icons etc.). By specifying a custom Apple‐ Script there is no need to use CPACK_DMG_DS_STORE, as the .DS_Store that is gener‐ ated by the AppleScript will be packaged. CPACK_DMG_BACKGROUND_IMAGE Path to an image file to be used as the background. This file will be copied to .background/background.<ext>, where ext is the original image file extension. The background image is installed into the image before CPACK_DMG_DS_STORE_SETUP_SCRIPT is executed or CPACK_DMG_DS_STORE is installed. By default no background image is set. CPACK_DMG_DISABLE_APPLICATIONS_SYMLINK Default behaviour is to include a symlink to /Applications in the DMG. Set this option to ON to avoid adding the symlink. CPACK_DMG_SLA_DIR Directory where license and menu files for different languages are stored. Setting this causes CPack to look for a <language>.menu.txt and <language>.license.txt file for every language defined in CPACK_DMG_SLA_LANGUAGES. If both this variable and CPACK_RESOURCE_FILE_LICENSE are set, CPack will only look for the menu files and use the same license file for all languages. CPACK_DMG_SLA_LANGUAGES Languages for which a license agreement is provided when mounting the generated DMG. A menu file consists of 9 lines of text. The first line is is the name of the language itself, uppercase, in English (e.g. German). The other lines are transla‐ tions of the following strings: · Agree · Disagree · Print · Save… · You agree to the terms of the License Agreement when you click the “Agree” but‐ ton. · Software License Agreement · This text cannot be saved. The disk may be full or locked, or the file may be locked. · Unable to print. Make sure you have selected a printer. For every language in this list, CPack will try to find files <language>.menu.txt and <language>.license.txt in the directory specified by the CPACK_DMG_SLA_DIR variable. CPACK_COMMAND_HDIUTIL Path to the hdiutil(1) command used to operate on disk image files on Mac OS X. This variable can be used to override the automatically detected command (or spec‐ ify its location if the auto-detection fails to find it.) CPACK_COMMAND_SETFILE Path to the SetFile(1) command used to set extended attributes on files and direc‐ tories on Mac OS X. This variable can be used to override the automatically detected command (or specify its location if the auto-detection fails to find it.) CPACK_COMMAND_REZ Path to the Rez(1) command used to compile resources on Mac OS X. This variable can be used to override the automatically detected command (or specify its location if the auto-detection fails to find it.) CPackFreeBSD The built in (binary) CPack FreeBSD (pkg) generator (Unix only) Variables specific to CPack FreeBSD (pkg) generator CPackFreeBSD may be used to create pkg(8) packages – these may be used on FreeBSD, Dragon‐ flyBSD, NetBSD, OpenBSD, but also on Linux or OSX, depending on the installed package-man‐ agement tools – using CPack. CPackFreeBSD is a CPack generator and uses the CPACK_XXX variables used by CPack. It tries to re-use packaging information that may already be specified for Debian packages for the CPackDeb generator. it also tries to re-use RPM packaging information when Debian does not specify. CPackFreeBSD generator should work on any host with libpkg installed. The packages it pro‐ duces are specific to the host architecture and ABI. CPackFreeBSD sets package-metadata through CPACK_FREEBSD_XXX variables. CPackFreeBSD, unlike CPackDeb, does not specially support componentized packages; a single package is created from all the software artifacts created through CMake. All of the variables can be set specifically for FreeBSD packaging in the CPackConfig file or in CMakeLists.txt, but most of them have defaults that use general settings (e.g. CMAKE_PROJECT_NAME) or Debian-specific variables when those make sense (e.g. the homepage of an upstream project is usually unchanged by the flavor of packaging). When there is no Debian information to fall back on, but the RPM packaging has it, fall back to the RPM information (e.g. package license). CPACK_FREEBSD_PACKAGE_NAME Sets the package name (in the package manifest, but also affects the output file‐ name). · Mandatory: YES · Default: · CPACK_PACKAGE_NAME (this is always set by CPack itself, based on CMAKE_PROJECT_NAME). CPACK_FREEBSD_PACKAGE_COMMENT Sets the package comment. This is the short description displayed by pkg(8) in standard “pkg info” output. · Mandatory: YES · Default: · CPACK_PACKAGE_DESCRIPTION_SUMMARY (this is always set by CPack itself, if noth‐ ing else sets it explicitly). · PROJECT_DESCRIPTION (this can be set with the DESCRIPTION parameter for project()). CPACK_FREEBSD_PACKAGE_DESCRIPTION Sets the package description. This is the long description of the package, given by “pkg info” with a specific package as argument. · Mandatory: YES · Default: · CPACK_DEBIAN_PACKAGE_DESCRIPTION (this may be set already for Debian packaging, so we may as well re-use it). CPACK_FREEBSD_PACKAGE_WWW The URL of the web site for this package, preferably (when applicable) the site from which the original source can be obtained and any additional upstream documen‐ tation or information may be found. · Mandatory: YES · Default: · CPACK_DEBIAN_PACKAGE_HOMEPAGE (this may be set already for Debian packaging, so we may as well re-use it). CPACK_FREEBSD_PACKAGE_LICENSE The license, or licenses, which apply to this software package. This must be one or more license-identifiers that pkg recognizes as acceptable license identifiers (e.g. “GPLv2”). · Mandatory: YES · Default: · CPACK_RPM_PACKAGE_LICENSE CPACK_FREEBSD_PACKAGE_LICENSE_LOGIC This variable is only of importance if there is more than one license. The default is “single”, which is only applicable to a single license. Other acceptable values are determined by pkg – those are “dual” or “multi” – meaning choice (OR) or simul‐ taneous (AND) application of the licenses. · Mandatory: NO · Default: single CPACK_FREEBSD_PACKAGE_MAINTAINER The FreeBSD maintainer (e.g.





COPYRIGHT
2000-2019 Kitware, Inc. and ContributorsThis manual | Reference | Other manuals |
---|---|---|
cmake-modules(7) | referred by | ccmake(1) | cmake(1) | cmake-developer(7) | cmake-gui(1) | cpack(1) | ctest(1) |
refer to | backtrace(3) | cmake(1) | cmake-compile-features(7) | cmake-qt(7) | cpack(1) | ctest(1) | rpm(8) |